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Exercise 1 (Generic Programming)

In the lecture, we saw that algebraic data types can be expressed as fixpoints of functors. In this
exercise, we will build on this machinery to do generic programming, i.e. writing algorithms, which
work uniformly for all algebraic datatypes.

A classical application for generic programming is serialization, e.g. converting between data types
and some serialization format like JSON or binary code. This application is relevant in many
programs, e.g. when sending data over a network socket or saving it in a file or database.

The following shows a first attempt at a serialization API:

toBits :: a -> [Bool] -- Convert an `a` to a list of bits
fromBits :: [Bool] -> Maybe a -- Try to convert a list of bits to an `a`.

-- Might fail for bad bits.

These functions could clearly be used with arbitrary argument types, however it is impossible to
implement them, because the implementation depends on the concrete structure of the type we put
in for a. As a second attempt, we might use a type class:

class Serialize a where
toBits :: a -> [Bool]
fromBits :: [Bool] -> Maybe a

Using a type class allows us to have different behavior for different types, but someone needs to
manually write Serialize-instances for every new algebraic datatype that is defined.

This is rather annoying, because all of those instances follow the same pattern. In particular,
we could capture this pattern by writing an algorithm that given the description of an algebraic
data type (how many constructors, types of the fields of the constructors, etc.) produces us a
Serialize-instance for that type. The problem is that we cannot directly implement this algorithm
in Haskell because it is a function from Haskell code to Haskell code.

What we would like is to simply annotate a data type with deriving (Serialize), but without
needing to submit a pull request to the Haskell compiler to hardcode our generic algorithm.

In Haskell there are two main ways of achieving that:

1. Template Haskell is a macro system1, which literally allows writing Haskell functions, which
map Haskell syntax trees to Haskell syntax trees. Using Template Haskell divides the
compilation of Haskell into two stages: in the first stage, the Template Haskell code is
executed, which transforms the Haskell code written by the user to Haskell code without
Template Haskell; and in the second stage that Haskell code is then compiled as usually.

While Template Haskell is very powerful and avoids performance overhead at runtime, it
also adds some cognitive overhead and it is rather cumbersome to write algorithms as code
transformations and to debug them.

1Comparable with Rust’s proc-macros, but significantly more powerful than C/C++ preprocessor macros.
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2. Generic Programming techniques do not require multiple stages, but allow expressing generic
algorithms directly in Haskell without the need for syntax tree transformations. This is
achieved by finding a way to encode arbitrary algebraic data types in just a finite amount of
fixed datatypes, e.g. sum types Either a b for the constructors and product types (a, b)
for the different fields within a constructor.

A generic algorithm can then be expressed as a type class with an instance that says how
it behaves on product types, sum types, etc. To use the generic algorithm, we first encode
its generic arguments, then run it, and then decode its generic results back to the actual
datatype.

If we have a new algebraic data type, then all we need to do is to implement the encoding
and decoding functions for it, and in return all generic algorithms can be used on it. In
practice, the encoding and decoding functions are automatically derived either directly by
the compiler2 or via a macro system like Template Haskell, so new algebraic datatypes can
be used directly with all generic algorithms without needing to write any boilerplate code.

In this exercise, we are going to look at a generic programming technique, which is based on
the functor fixpoints that we have already explored in the lecture. It comes without bells and
whistles (like accessing constructor names and deriving the encoding and decoding functions), but
its simplicity and transparency makes it suitable for getting your feet wet with generic programming.
In practice, you probably want to use one of the above mentioned techniques.

The idea of this technique is that each algebraic datatype is isomorphic to a fixpoint of a specific
functor. This functor can be expressed as a combination of two primitive functors (Id and Const b)
and two functor combinators (:+: and :*:)3.

The relevant definitions are:

newtype Const b a = Const b -- Constant functor
newtype Id a = Id a -- Identity functor

data (:+:) f g a = Inl (f a) | Inr (g a) -- Sum functor (aka Coproduct)
data (:*:) f g a = Pair (f a) (g a) -- Product functor (not covered in lecture)

newtype Fix f = Fix (f (Fix f)) -- this was called `Mu` in the lecture

Computing the functor from an algebraic datatype definition works as follows:

• Each field of a constructor corresponds to a primitive functor. If the type b of the field is the
algebraic datatype itself, then the functor is Id, otherwise it is Const b.

• Each constructor is a tuple of its fields. Consequently, the functor for a constructor is the
product functor of its field functors, e.g. f1 :*: f2 :*: ... :*: fn. Constructors without
fields can be treated as if they have a single field of type ().

• A value of the datatype is one of its constructors, so the functor for the whole datatype is the
sum functor of its constructor functors c1 :+: c2 :+: ... :+: cn.

Let’s say f is the functor obtained from a datatype in this manner, then Fix f is isomorphic to
the original datatype.

For example, we can define an algebraic datatype for integer lists as

data IntList = Nil | Cons Int IntList

and encode them as

2See Haskell’s Generic type class and deriving (Generic)
3This is true for all algebraic datatypes except for those, which contain functions where the type itself appears

recursively, e.g. data D = C (Int -> D). We omit these cases for simplicity, but it is also possible to extend the
technique to make it work with them.
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Fix (Const () :+: (Const Int :*: Id))

The Nil constructor has no fields, so we treat it as if it has a single field of type (), which we
represent as Const (). Since there is only one field, there isn’t really a product to compute so we
represent the whole Nil constructor as Const (). The Cons constructor has two fields, the first
one has type Int, so we represent it as Const Int, and the second one has type IntList so we
represent it as Id.

Note that if we apply the functor to an argument type a, then the resulting type

(Const () :+: (Const Int :*: Id)) a

is isomorphic to

Either () (Int, a)

because Const b a is isomorphic to b and Id a is isomorphic to a. If Haskell would support
type-level lambdas, then we could encode the type instead simply as

Fix (\a -> Either () (Int, a))

which conveys more clearly what we want to do here.

To capture algebraic data types for which we defined such an encoding, we define a type class:

class Functor f => GenRepr a f | a -> f where
toGen :: a -> Fix f
fromGen :: Fix f -> a

A constraint GenRepr a f means that the type a is isomorphic to Fix f. The functional dependency
| a -> f forbids us from defining two GenRepr instances for the same a. This improves type
inference, because for a constraint GenRepr a f the type checker only needs to know a, but not f,
which leads to less ambiguity errors.

Your task is to use the code supplement from the website, implement GenRepr for certain datatypes
and write a few generic algorithms, which then work for all datatypes that have a GenRepr instance.
In particular:

1. Figure out the functor f for the following algebraic datatypes a and write corresponding
GenRepr a f instances:

• data Bool = True | False

• lists

• data Tree a = Leaf | Branch (Tree a) a (Tree a)

For lists and trees the functor f will have the functor of the element type e as an additional
parameter. This is necessary, because for example [[Bool]] should encode also the inner
lists and booleans and not just the outer list. Consequently, your list instance should look like

instance GenRepr a e => GenRepr [a] (ListF e) where

Example:

>>> toGen [True, False]
(Fix (Inr (Pair (Const (Fix (Inr (Const ()))))

(Id (Fix (Inr (Pair (Const (Fix (Inl (Const ()))))
(Id (Fix (Inl (Const ())))))))))))
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2. Write a generic function depth, which calculates the recursion depth of an algebraic datatype:

• For lists, depth is the length of the list;

• For trees, depth is the depth of the tree, i.e. the length of the longest path from root to
leaf; and

• For booleans, depth is always 0.

To implement depth generically, we need to create a typeclass and instanciate it for each of
the primitive functors and functor combinators:

class Functor f => GenDepth f where
genDepth :: f Int -> Int

instance GenDepth (Const b) where ...
instance GenDepth Id where ...
instance (GenDepth f, GenDepth g) => GenDepth (f :+: g) where ...
instance (GenDepth f, GenDepth g) => GenDepth (f :*: g) where ...

We can then define depth as follows:

depth :: (GenRepr a f, GenDepth f) => a -> Int
depth x = foldFix genDepth $ toGen x

Note that since we implemented GenDepth for exactly those functors to which we limited
ourselves when implementing GenRepr, the GenDepth f constraint is trivially satisfied when
GenRepr a f is satisfied.

Note that depth should not recurse into substructures, i.e. calling depth on a nested list
returns the length of the outer list just like the real length function. This can be easily
achieved by simply ignoring all Const b functors by assigning them depth 0.

3. Write a generic function toBits, which serializes arbitrary algebraic datatypes to bits.

We recommend to use the following datatype instead of booleans, because it has a much more
readable Show instance for large lists of bits:

data Bit = O | I deriving (Show, Eq)
type Bits = [Bit]

The implementation is similar to the depth function from the previous exercise part, with one
important difference: nested datastructures need to be serialized recursively, e.g. to serialize
a [[Bool]] it is not sufficient to serialize the outer list, but also the inner bool lists and the
bools inside of them.

This concerns the instance for Const e, which now needs to be split into multiple instances:

instance GenToBits f => GenToBits (Const (Fix f)) where ...
instance GenToBits (Const ()) where ...

The first instance is to cover other algebraic datatypes, e.g. when a list of trees is serialized,
then in the generic representation of the list each tree will be a Const (Fix f) where f is
the functor for trees. The second instance is relevant for constructors without any fields, like
the nil constructor [].

Examples:
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>>> toBits False
[O]
>>> toBits True
[I]
>>> toBits [False]
[I,O,O]
>>> toBits [True]
[I,I,O]
>>> toBits [False, False]
[I,O,I,O,O]

In toBits [False] == [I,O,O], the I stands for taking the Inr constructor ((:)), the
middle O stands for False, and the last O stands for taking the Inl constructor ([]).

4. (Bonus) Write a generic function fromBits, which deserializes arbitrary algebraic datatypes
from bits.

This implementation is quite a bit different from the previous two, which is mainly caused by
the fact that it is not defined by recursing over the Fix f, but instead we recurse over Bits
and try to build a Fix f as output.

We recommend to implement the fromBits function in terms of a fromBits' function:

fromBits' :: (GenRepr a f, GenFromBits f) => Bits -> Maybe (a, Bits)
fromBits' = map' (fromGen . Fix) . fromBitsGen

where Bits -> Maybe (a, Bits) is basically a simple form of the parser monad, which does
not support ambiguity (Maybe instead of lists). It is not necessary to implement any parser
combinators for this exercise, but it suffices to use the functor and monad instances for Maybe
at a few places.

The actual fromBits function can then be defined in terms of fromBits' and additionally
asserts that no bits are left-over:

fromBits :: (GenRepr a f, GenFromBits f) => Bits -> Maybe a
fromBits bs = case fromBits' bs of

Just (x, []) -> Just x
_ -> Nothing

We recommend the following structure for the type class:

class Functor f => GenFromBits f where
fromBitsGen :: GenFromBits g => Bits -> Maybe (f (Fix g), Bits)

instance GenFromBits f => GenFromBits (Const (Fix f)) where ...
instance GenFromBits (Const ()) where ...
instance GenFromBits Id where ...
instance (GenFromBits f, GenFromBits g) => GenFromBits (f :+: g) where ...
instance (GenFromBits f, GenFromBits g) => GenFromBits (f :*: g) where ...
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