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Exercise Sheet 12

Exercise 1 (Hindley-Milner Type Inference)

In this exercise sheet, we are going to extend the lambda calculus interpreter from the previous
exercise sheet with polymorphism and Hindley-Milner type inference.

This requires us to add a let-expression to our expression syntax, and extend the type syntax with
type schemes:

data Exp = ...
| ELet EVar Exp Exp

data TypeScheme = TForall [Var] Type

type Ctx = [(Var, TypeScheme)]

Here are some examples of how the interpreter should behave:

lambda> (let id = (\x. x) in ((id id) 42))

Type:
Int

Reduction:
(let id = (\x. x) in ((id id) 42))
(((\x. x) (\x. x)) 42)
((\x. x) 42)
42

Reduced to value.

lambda> (let x = (let y = 1 in (y + 2)) in (let z = (x + 3) in (z + 4)))

Type:
Int

Reduction:
(let x = (let y = 1 in (y + 2)) in (let z = (x + 3) in (z + 4)))
(let z = ((let y = 1 in (y + 2)) + 3) in (z + 4))
(((let y = 1 in (y + 2)) + 3) + 4)
(((1 + 2) + 3) + 4)
((3 + 3) + 4)
(6 + 4)
10

Reduced to value.

Note, that the first example does not work without polymorphism: the let expression has a body
((id id) 42) where the first id has type (Int -> Int) -> (Int -> Int) whereas the second id
has type Int -> Int. This is only possible if the variable id has the polymorphic type ∀α. α → α
in the body of the let,

We recommend to proceed in the following steps:
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1. Extend the parser to support let-expressions.

For simplicity, we recommend to require explicit parentheses around let-expressions, as we
did in the previous exercise sheet, e.g. (\x. (let x = (1 + 2) in (x + 3))).

Similar as with true and false you need to ensure that let and in cannot be parsed as
variables.

2. Extend the free and substitution function with cases for ELet.

Note, that the variable bound in a ELet-expression requires similar handling as the vari-
able bound in a ELam-expression. Since let x = e1 in e2 has the same meaning as
((\x. e2) e1), substitution should behave on let x = e1 in e2 exactly as it does on
a ((\x. e2) e1) expression.

3. Extend the step function with a case for ELet. Since our interpreter does neither use
a call-by-value nor a call-by-name evaluation strategy, but instead completely normalizes
the expression, we only need a β-reduction rule for ELet, but no congruency rules. Recall
that let x = e1 in e2 should behave like ((\x. e2) e1), so it can always be reduced by
substituting e1 for x in e2, independent of whether e1 or e2 are already evaluated or not.

4. Extend the pretty function with a case for ELet.

5. Implement the type inference algorithm from the lecture.

Computing the most general unifiers works the same as before and requires no change.

Type substitution needs to be not only defined on types but additionally on type schemes:
only those variables should be substituted which are free in the type scheme, i.e. which are
not bound by the TForall.

A new operation is required to compose two type substitutions:

(.#) :: TypeSub -> TypeSub -> TypeSub

If s1 .# s2 is applied to a type, then it should behave like first applying s2 to the type, and
then applying s1, i.e. forall s1 and s2 and types t it should hold that

substType (s1 .# s2) t == substType s1 (substType s2 t)

This is analogous to how function composition behaves:

applyFun (f1 . f2) x == applyFun f1 (applyFun f2 x)

where applyFun is simply defined as

applyFun f x = f x
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