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Exercise Sheet 11

In this exercise sheet, we are going to extend the lambda calculus interpreter from the previous
exercise sheet with built-in constants and operations for integers and booleans, and a type system
with a type inference algorithm.

Exercise 1 (Extended Interpreter)

In this exercise, we are going to extend the lambda calculus interpreter with integer and booleans,
but do not yet add a type system.

To be precise, we are going to add integer constants, boolean constants, addition, inequality, and
conjunction. We can represent the abstract syntax tree of our language for example as

type Var = String

data Op2 = OAdd
| OLess
| OAnd
deriving (Show, Eq)

data Exp = EVar Var
| ELam Var Exp
| EApp Exp Exp
| EInt Int
| EBool Bool
| EOp2 Exp Op2 Exp
deriving (Show, Eq)

We recommend to proceed in the following steps:

1. Extend the parser to support the parsing of the new language constructs.

For simplicity, we recommend to to side-step operator precendence and binding strength,
and simply require explicit parentheses around operator applications, e.g. that x + 2 < 5 is
written as ((x + 2) < 5).

Care needs to be taken to avoid ambiguity with booleans and variables. Previously, we said
everything is a variable that matches the regex [a-zA-Z]+. However, this would allow true
to be parsed both as a boolean constant and as a variable with name true. To fix this we
want to restrict the variable parser to only allow names which are neither true nor false. A
simple way to achieve this is via pVar >>= f, where pVar is the previous variable parser and
f is a function which lets the parser fail if pVar parsed "true" or "false".

2. Extend the free and substitution function to also cover the new language constructs. This
should be straightforward, because both of those functions are only concerned with variables,
which our new language constructs do not use directly.
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3. Extend the step function with the reduction rules for the new language constructs. In
particular, we have new β-reduction rules, which state how introduction forms (like integer
and boolean constants) interact with elimination forms (like operators), and congruency-rules,
which state how reduction can be propagated into subexpressions.

We have one β-reduction rule for each operator, e.g. an addition where the operands are
integer constants EOp2 (EInt n1) EAdd (EInt n2) reduces to EInt (n1 + n2).

We have two congruency rules for each binary operator, one which propagates reduction into
the left subexpression, and on which propagates reduction into the right subexpression. For
example for addition we have

e1 → e′
1

(e1 + e2) → (e′
1 + e2)

e2 → e′
2

(e1 + e2) → (e1 + e′
2)

4. Extend the pretty function to work with the new language constructs.

Exercise 2 (Type System & Type Inference)

By extending the language with non-function-values (like integers), we unfortunately gain the
possibility to write bad programs, e.g. the program 8 3 tries to treat the integer 8 as a function by
applying it to another integer 3. As 8 is not a function, the program 8 3 does neither reduce nor is
it a value – the program is stuck. Stuck programs correspond to runtime errors.

In this exercise, we add a type system to our interpreter, which statically rules out all programs,
which might get stuck during reduction. Hence, a program that type-checks is guaranteed to not
cause any runtime errors.

To avoid having type annotations in our programs, we use the type inference algorithm that was
introduced in the lecture.

An interpreter for a typed language first parses the program, then type checks it, and then runs it.
Typically, if the program does not type check, then it is also not run. However, since we are writing
this interpreter for educational purposes, we are going to run it also if it does not type check such
that we can see where it gets stuck.

For example, we want the interpreter to behave as followed:

lambda> (\x. (x + 1))
Type:

(Int -> Int)
Reduction:

(\x. (x + 1))
Reduced to value.

lambda> ((\x. (x + 1)) 5)
Type:

Int
Reduction:

((\x. (x + 1)) 5)
6

Reduced to value.

lambda> ((\x. (x + 1)) true)
Type:

ERROR: Cannot unify Int and Bool!
Reduction:

((\x. (x + 1)) true)
(true + 1)

Reduction stuck!
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lambda> (x + x)
Type:

ERROR: Undefined variable x of type Int
Reduction:

(x + x)
Reduction stuck!

lambda> (\x. x)
Type:

ERROR: Expression has type (alpha:1 -> alpha:1).
This type is ambigous as it still contains type variables.
To support this expression, we would need proper polymorphism
in our type system.

Reduction:
(\x. x)

Reduced to value.

To implement type inference, we first need to define the syntax of types:

data Type = TInt
| TBool
| TFun Type Type
| TVar Var
deriving (Eq, Show)

The constructors TInt, TBool, and TFun correspond to the actual types of the lambda calculus
extended with booleans and integers. The TVar type is an artifact of the type inference algorithm,
which temporarily needs to introduce type variables for parts of the types, which are not yet known.
If type inference suceeds then the resulting type does not contain any type variables anymore (since
we are implementing a simple type system without polymorphism).

To extend our interpreter repl with a type checker, we ultimately need a single function

infer :: Expr -> Either TypeError Type

which given an expression tries to infer the type of the expression or fails with a type error. We
can then call this function in the repl function after parsing but before reduction.

We recommend to implement infer in terms of a more general infer' function of type:

infer' :: (MonadState Int m, MonadError TypeError m) -> Expr -> m (Ctx, Type)

The infer' function should implement the type inference algorithm discussed in the lecture: given
an expression, it tries to infer a type and the set of typing assumptions (called a Ctx here). The
computation to infer a type can have two side-effects: it can fail with a TypeError, and it can
manipulate a state of type Int. The state of type Int allows to conveniently create fresh type
variables by incrementing the state, e.g. we can define a function

freshVar :: MonadState Int m => m Var

such that when we start with a state of 0, the first call of freshVar returns "alpha:0", the second
call returns "alpha:1", and so on.

The list of typing assumptions (often called a typing context) can be defined as a map from variables
to types, e.g.
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type Ctx = [(Var, Type)]

The infer function should call infer' with an integer state 0 and ensure that the returned Ctx is
empty. A non-empty context would mean that the program contains undefined variables.

Here are some examples of how infer' should behave:

run :: StateT Int (Either TypeError) a -> Either TypeError a
run mx = evalStateT mx (0 :: Int)

>>> run (infer' (EInt 2))
Right ([], TInt)

>>> run (infer' (EOp2 (EVar "x") OAdd (EInt 2)))
Right ([("x", TInt)], TInt)

>>> run (infer' (EVar "x"))
Right ([("x", TVar "alpha:0")], TVar "alpha:0")

>>> run (infer' (ELam "x" (EVar "x")))
Right ([("x", TInt)], TInt)

>>> run (infer' (ELam "x" (EVar "x")))
Right ([], TFun (TVar "alpha:0") (TVar "alpha:0"))

>>> run (infer' (EApp (ELam "x" (EVar "x")) (EBool True)))
Right ([], TBool)

The meaning of the first example is that the expression 2 has type Int without making any
assumptions about the types of variables.

The meaning of the second example is that the expression x + 2 has type Int assuming that x is a
variable of type Int.

To replace type variables, we need to define a substitution operation, similar as we did for expression
variables in the previous exercise. In contrast to the previous exercise, we use a substitution operation
which replaces multiple variables at the same time:

type Sub = [(Var, Type)]
subst :: Sub -> Type -> Type

For example:

>>> subst [("a", TInt), ("b", TBool)] (TFun (TVar "a") (TVar "b"))
TFun TInt TBool

Note that this substitution is much simpler than on expressions, because there are no annoying
lambda terms which can bind variables.

A substitution, which makes two types t1 and t2 equal is called a unifer of t1 and t2. For example,
the types TFun (TVar "a") TInt and TFun TBool TInt can be made equal by the substitution
[("a", TBool)], so [("a", TBool)] is a unifier of those types.

The most general unifier of two types is a unifier which leaves the most degrees of freedom (for
a formal definition see the slides). For example, the types TVar "a" and TVar "b" are unified
by u1 = [("a", TInt), ("b", TInt)] and u2 = [("a", TBool), ("b", TBool)]. However,
neither of these unifiers are most general. A most general unifier is mgu = [("b", TVar "a")],
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because it does not needlessly commit to TInt or TBool, and the effects of u1 and u2 can still be
achieved after unifying the types with mgu by doing another substitution.

Sometimes, we need to compute a substitution which does is not only the most general unifier of a
single pair of types, but for multiple pairs of types.

We recommend to define these functions mutually recursive, i.e.

mgu1 :: MonadError TypeError m => Type -> Type -> m Sub
mgu :: MonadError TypeError m => [(Type, Type)] -> m Sub

An mgu for multiple type pairs is basically the concatenation of the mgu1 of each individual type
pair. However, in case multiple type pairs contain the same type variables, we need to take care
that the unifiers do not replace them with different types. This can be achieved by first computing
the mgu1 for the next pair and then applying it to all remaining pairs before computing their mgu.
This forces the mgu1 for the remaining pairs to only add new replacements.

The type inference algorithm from the slides, does not only compute the mgu of types but also of
type contexts by abuse of notation. In the implementation, this corresponds to a function which
converts two type contexts to a list of type pairs:

ctxEqPairs :: Ctx -> Ctx -> [(Type, Type)]

This function should return all pairs of types for the same variables, e.g.

>>> ctxEqPairs [("x", t1), ("y", t2), ("z", t3)] [("x", t1'), ("z", t3')]
[(t1, t1'), (t3, t3')]

In other words: to unify two type contexts, all types of variables, which appear in both contexts,
need to be unified pairwise.
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