
Prof. Dr. Peter Thiemann
Hannes Saffrich
saffrich@informatik.uni-freiburg.de

Winter Term 2024/25

Functional Programming
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2024/

Exercise Sheet 7

In this exercise we are going to look at applicative functors and parsers.

Applicative Functors

In Haskell, an applicative functor is represented by a functor f together with two operations

pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

which satisfy the applicative laws:

pure id <*> v = v
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
pure f <*> pure x = pure (f x)
u <*> pure y = pure ($ y) <*> u

Each applicative functor is also a regular functor, i.e. we can recover fmap in terms of pure and
<*> as followed:

fmap' :: (a -> b) -> f a -> f b
fmap' f x = pure f <*> x

Alternative Definition

Just as we have seen Kleisli Categories as an alternative definition for monads, we are also going
to have a look at an alternative definition of applicative functors as lax monoidal functors. This
definition is less ergonomic to use, but yields some insight about what applicative functors are.

In this alternative definition, we have two operators

unit :: f ()
(<,>) :: f a -> f b -> f (a, b)

which need to satisfy the following laws:

unit <,> fx = fmap ((),) fx
fx <,> unit = fmap (,()) fx
(fx <,> fy) <,> fz = fmap (\(x, (y, z)) -> ((x, y), z)) (fx <,> (fy <,> fz))

These laws should remind you of the monoid laws: if we ignore the fmaps, then we have an
associative binary operation <,> with a neutral element unit:

unit <,> fx = fx
fx <,> unit = fx
(fx <,> fy) <,> fz = fx <,> (fy <,> fz)
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However, without the fmap, those values are not equal, but only isomorphic: If fx is a container
with value x as element, then unit <,> fx is the same container with value ((), x). Those
values are not equal, but only isomorphic, i.e. the values have different structure, but carry
precisely the same information. Similarly, if (fx <,> fy) <,> fz produces a container with
element ((x, y), z), then fx <,> (fy <,> fz) produces a container with element (x, (y, z)),
where again the elements are not equal, but only isomorphic.

If we think of a value of type f a as some kind of computation, which produces a value of type
a, then the fact that f is an applicative functor means that the effects behave like a monoid, and
hence computations can be combined by combining the effects like a monoid and collecting the
output values in a pair, allowing them to be manually combined via fmap afterwards, if required.

We can derive the alternative definition from the original definition:

unit = pure ()
fx <,> fy = pure (,) <*> fx <*> fy

and vice versa

pure x = fmap (\_ -> x) unit
ff <*> fx = fmap (\(f, x) -> f x) (ff <,> fx)

Functors vs Applicatives vs Monads

In the previous exercise, we stated that every monad is an applicative functor, but not vice versa,
and every applicative functor is a functor, but not vice versa.

But why exactly is it “not vice versa”? What can an applicative functor do, that a functor cannot
do necessarily, and what can a monad do, that an applicative functor cannot do necessarily?

The difference between functors and applicatives is easy to see:

fmap :: (a -> b) -> (f a -> f b)
(<*>) :: f (a -> b) -> (f a -> f b)

With fmap we can change the elements of a container / the results produced by a computation,
but we cannot combine multiple containers / computations. The latter is possible for applicative
functors, because the containers / computations behave like a monoid in some sense, and hence
can be combined.

The difference between applicative functors and monads is more subtle:

(<*>) :: f (a -> b) -> (f a -> f b)
(>>=) :: f a -> (a -> f b) -> f b

To make the difference more tangible, let us first define a slight variation of (>>=):

(>>>) :: f a -> (a -> f b) -> f (a, b)
mx >>> f = mx >>= \x -> fmap (\y -> (x, y)) (f x)

The (>>>) operator behaves like (>>=) but the resulting computation does not just return the
value of the second computation, but the values of both computations. It is easy to see that (>>=)
and (>>>) are equally expressive, as we can also define (>>=) in terms of (>>>), by simple throwing
the result of the first computation away:

(>>=) :: f a -> (a -> f b) -> f b
mx >>= f = fmap (\(_, y) -> y) (mx >>> f)
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Now, comparing the (<,>) and (>>>) operators clearly reveals the difference between a monad
and an applicative functor:

(<,>) :: f a -> f b -> f (a, b)
(>>>) :: f a -> (a -> f b) -> f (a, b)

When combining multiple computations, then a monad allows to choose the second computation
f b based on the value of type a produced by the first computation f a. With the applicative
operators this is not possible: the (<,>) and (<*>) operators are also combining the effects and
the produced values, but they are combining the effects independently of the produced values.
This means that for applicative functors, the effects are already known before the computation is
run, whereas for monads, it might be necessary to run part of the computation first, because the
intermediary result can influence, which computation will happen afterwards.

As an example, consider the echo computation, we saw in a previous exercise sheet:

echo :: IO ()
echo = getLine >>= \line -> putStrLn line

The echo computation first reads a line from the terminal and then prints it back to the user. This
means the value line produced by running the getLine computation influences the effect of the
putStrLn line computation, i.e. it influences what is printed to the terminal. Writing the echo
computation by only using operators from the Applicative instance is not possible.

Applicatives and do-notation

For monads, it is sometimes possible to use applicative operators instead of do-notation. This does
not always yield more readable code, but in certain cases it does.

It is possible to replace do-notation with applicative operators if the results of previous computations
do not influence subsequent computations, but they are only returned at the end, e.g.

do
x1 <- e1
x2 <- e2
...
xn <- en
return (f x1 x2 ... xn)

where the expressions e1, e2, ..., en do not mention any of the variables x1, x2, ..., xn. In this case
the do-block can be replaced by

pure f <*> e1 <*> e2 <*> ... <*> en

This notation runs into problems, if some of the computations’ results are not needed to produce
the result via f, e.g.

do
x1 <- e1
x2 <- e2
x3 <- e3
x4 <- e4
x5 <- e5
return (f x2 x4)

A straightforward translation to applicative syntax would look as followed:
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pure (\_ x2 _ x4 _ -> f x2 x4) <*> e1 <*> e2 <*> e3 <*> e4 <*> e5

As this is rather noisy, Haskell provides the following operators

(<*) :: Applicative f => f a -> f b -> f a
(*>) :: Applicative f => f a -> f b -> f b
fx <* fy = pure (\x y -> x) <*> fx <*> fy
fx *> fy = pure (\x y -> y) <*> fx <*> fy

The (<*) and (*>) operators combine two computations by only keeping the first and second result,
respectively. As a mnemonic, you can think of the < and > symbol as pointing in the direction of
the computation whose value should be used in the combined computation. With these operators
we can write the above do-block as

pure f <* e1 <*> e2 <* e3 <*> e4 <* e5

which is parenthesized as

((((pure f <* e1) <*> e2) <* e3) <*> e4) <* e5

As we want to ignore the result of e1, we use pure f <* e1 so the combined computation still
produces f as a result. We then apply <*> e2 because the result of e2 should be the first argument
to f. We then use <* again to ignore the result of e3, and so on.

To further improve readability, there is also a infix version of fmap:

(<$>) :: Functor f => (a -> b) -> f a -> f b
(<$>) = fmap

and a special case of fmap, which replaces the elements in the container with a constant value,
ignoring the previous elements in the container:

(<$) :: Functor f => b -> f a -> f b
y <$ fx = (\_ -> y) <$> fx

Since pure f <*> x is equal to fmap f x, we can use these operators to further rewrite the above
two do-blocks as:

f <$> e1 <*> e2 <*> ... <*> en

and

f <$ e1 <*> e2 <* e3 <*> e4 <* e5

which eliminates the use of pure.

Noise of History

In the previous exercise sheet, we have shown the following type class hierarchy of monads:
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class Functor f where
fmap :: (a -> b) -> f a -> f b

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

class Applicative m => Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

For a monad return and pure are always the same. The fact that return exists at all is because at
the beginning of Haskell, people did not know about Applicative and the hierarchy simply was

class Functor f where
fmap :: (a -> b) -> f a -> f b

class Functor m => Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

At some point, the Applicative type class was introduced in a breaking change (the AMP proposal),
and return was left in the Monad typeclass for backwards compatibility. However, return has a
default definition of return = pure so if you write a Monad-instance nowadays, you can leave out
return, and it will automatically use pure from your Applicative instance instead.

Exercise 1 (Applicative Instances)

In the previous exercise sheet, we implemented various monads. As we did not cover applicative
functors at that point in time, we left the Applicative instances undefined.

Implement Applicative instances for the monads from the previous exercise.

Exercise 2 (Parsers)

In the lecture, we saw an implementation of parser combinators. In this exercise we are going to
write a parser for a large subset of JSON, and use the fact that parsers are Applicatives to end
up with a notation that looks almost like a EBNF grammar specification.

You can find the parser combinators from the lecture in the code supplement for this exercise. The
definition differs from the lecture by wrapping the parser type in a newtype to make it easier to
write type class instances for parsers, i.e. instead of

type Parser t r = [t] -> [(r, [t])]

it uses

newtype Parser t r = Parser { runParser :: [t] -> [(r, [t])] }

The following steps will guide you through implementing a JSON parser:

1. Running a parser on a token list determines if a prefix of the token list is a word in the
parser’s language.

This is necessary to be able to combine parsers, because where the first parser stops is where
the next parser continues, but once the final parser is obtained, one usually wants to see if
the whole token list is a word in the language, and not just a prefix of it.

Write a function
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runParserEnd :: Parser t a -> [t] -> [a]

Which runs a parser on a token list and returns all results where the token list has been
consumed completely.

Examples:

>>> runParser (lit 'a') "a"
[('a',"")]
>>> runParser (lit 'a') "aha"
[('a',"ha")]
>>> runParserEnd (lit 'a') "a"
['a']
>>> runParserEnd (lit 'a') "aha"
[]

2. Implement Functor, Applicative, Monad, and Alternative instances for Parser t.

To use the Alternative type class, you need to import Control.Applicative. The
Alternative type class represents Applicative functors, which are equipped with an addi-
tional monoid structure (a different one than the monoid-like structure we discussed on the
lax monoidal functor representation), where (<|>) is an associative binary operation with a
neutral element empty:

class Applicative f => Alternative f where
empty :: f a
(<|>) :: f a -> f a -> f a

Note that all operations needed to create the instances, except for (>>=), are already defined
in the API from the lecture – they just have different names!

For the monad instance you can think of a value of Parser t a as a computation which
when run on a list of tokens, tries to parse a certain grammar from a prefix of the tokens,
and produces values of type a for each successful parse plus the unused suffix of the tokens.
In some sense, the Parser t monad is a combination of a State [t] monad with the list
monad. A computation described by px >>= f first tries to parse with px and then f can
look at the results to choose a parser with which to continue.

After writing those instances, the following should be a parser for a simple arithmetic language
that only has addition and natural numbers. The grammar for this language is given by:

nat ::= [’0’ − ’9’]+

expr ::= nat | ’(’ expr ’+’ expr ’)’

We write terminal symbols (tokens) in single quotes to distinguish them from non-terminal
symbols. The meaning of the grammar is:

• a nat is one or more digits; and

• a expr is either a nat or an opening parenthesis, followed by an expr, followed by a plus
symbol, followed by an expr, followed by a closing parenthesis.

Note, that to keep the example simple, whitespace is not allowed and parenthesis are
mandatory! The syntax tree for this language is:

data Expr1 = ENat Int | EAdd Expr1 Expr1 deriving (Eq, Show)

and it can be parsed as followed:
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-- Parsing a single digit
pDigit :: Parser Char Int
pDigit = msatisfy (\c -> readMaybe [c])

-- Converting a list of digits to an integer
digitsToInt :: [Int] -> Int
digitsToInt ds = sum $ zipWith (*) ds $ (10^) <$> reverse [0..length ds-1]

-- Parsing a natural number (we will discuss `some` in the next step)
nat :: Parser Char Int
nat = digitsToInt <$> some pDigit

-- Parsing an Expr1 via the Applicative and Alternative interfaces
expr1 :: Parser Char Expr1
expr1 = ENat <$> nat

<|> EAdd <$ lit '(' <*> expr1 <* lit '+' <*> expr1 <* lit ')'

-- Alternative: Parsing an Expr1 via the Monad and Alternative interfaces
expr1' :: Parser Char Expr1
expr1' = enat <|> eadd where

enat = do
n <- nat
return $ ENat n

eadd = do
lit '('
e1 <- expr1
lit '+'
e2 <- expr1
lit ')'
return $ EAdd e1 e2

Compare the definition of expr1 with the grammar above: if you squint a bit, you should
almost literally recognize the grammar in the implementation of the parser!

Also compare expr1 with expr1': while the monad implementation might still be more easy
to understand (for someone new to applicatives), it is also significantly longer and it is more
difficult to recognize the grammar in the monadic implementation.

3. Before we get to parsing JSON, it is helpful to extend the parser library with a few more
parser combinators.

Implement the following functions:

option :: Parser t a -> Parser t (Maybe a)
many0 :: Parser t a -> Parser t [a]
many1 :: Parser t a -> Parser t [a]
sepBy0 :: Parser t a -> Parser t b -> Parser t [a]
sepBy1 :: Parser t a -> Parser t b -> Parser t [a]

option p should return a parser, which parses p zero or one times. many0 p should return
a parser, which parses p zero or more times. many1 p should return a parser, which parses
p one or more times. sepBy0 p psep should return a parser, which parses p zero or more
times, but between each two parses p it parses a separate according to psep. sepBy1 p psep
should return a parser, which parses p one or more times, but between each two parses p it
parses a separate according to psep.

Examples:
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>>> runParserEnd (option (lit 'a')) ""
[Nothing] -- one successful parse, that returned Nothing
>>> runParserEnd (option (lit 'a')) "a"
[Just 'a']
>>> runParserEnd (option (lit 'a')) "aaa"
[] -- no successful parses

>>> runParserEnd (many0 (lit 'a')) ""
[[]] -- one successful parse, that returned the empty list
>>> runParserEnd (many0 (lit 'a')) "a"
[['a']]
>>> runParserEnd (many0 (lit 'a')) "aaa"
[['a', 'a', 'a']]

>>> runParserEnd (many1 (lit 'a')) ""
[] -- no successful parses
>>> runParserEnd (many1 (lit 'a')) "a"
[['a']]
>>> runParserEnd (many1 (lit 'a')) "aaa"
[['a', 'a', 'a']]

>>> runParserEnd (sepBy0 (lit 'a') (lit ',')) ""
[[]]
>>> runParserEnd (sepBy0 (lit 'a') (lit ',')) "a"
[['a']]
>>> runParserEnd (sepBy0 (lit 'a') (lit ',')) "a,a"
[['a', 'a']]
>>> runParserEnd (sepBy0 (lit 'a') (lit ',')) "a,a,a"
[['a', 'a', 'a']]
>>> runParserEnd (sepBy0 (lit 'a') (lit ',')) "a,a,a,"
[] -- no trailing separators allowed

Remark: All of the above functions are not specific to parsers, but can be implemented for
any Applicative with an Alternative instance! In particular, many0, many1, and option
are already implemented generically in Control.Applicative with names many, some, and
optional. For more information consult the documentation at: https://hackage.haskell.
org/package/base-4.20.0.1/docs/Control-Applicative.html#t:Alternative

4. Implement a parser for a subset of JSON consisting of integers, booleans, null, strings, lists,
and objects.

The datatype for JSON values is given by:

data JSON = JInt Int
| JBool Bool
| JNull
| JString String
| JList [JSON]
| JObject [(String, JSON)]
deriving (Show, Eq)
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The grammar describing the concrete syntax is given by

int ::= ’-’? [’0’ − ’9’]+

bool ::= ’true’ | ’false’
str ::= ’"’ [ˆ ’"’]∗ ’"’
ws ::= (’ ’ | ’\n’ | ’\t’ | ’\r’)∗

json ::= int | bool | ’null’ | str | ’[’ ws jsons? ws ’]’ | ’{’ ws items? ws ’}’
jsons ::= json | json ws ’,’ ws jsons
items ::= item | item ws ’,’ ws items
item ::= str ws ’:’ ws json
json’ ::= ’ws’ json ’ws’

The meaning of the grammar is:

• an int is optionally a ’-’ symbol followed by one or more digits;

• a bool is either the tokens ’true’ or ’false’;

• a str starts with a double quote, followed by zero or more characters that are not a
double quote, and ends with a double quote;

• ws represents zero or more whitespace symbols (spaces, newlines, tabs, carriage returns).
This is necessary, since we are writing a parser directly on Char tokens, so we also need
to tell the parser where whitespace is allowed;

• a json value is either an int, a bool, the tokens ’null’, a str, a list of json values, or
an object, i.e. dictionary from strings to json values. Lists and objects require extra
care, because JSON requires that list entries and object items are separated by commas,
where no trailing comma is allowed, e.g. [1,2,3] is ok, but [1,2,3,] is not. A list
starts with the ’[’ symbol, followed by zero or more whitspaces, followed by optionally
jsons, followed by zero or more whitspaces, followed by the ’]’ symbol. A jsons is either
a single json value or a json value followed by a comma, followed by jsons. An object
uses the same pattern as for lists to make sure that each item is separated with a comma,
but no trailing comma is allowed; and

• json’ is the start symbol, which we use to parse full json documents. It is the same as
json, but allows whitespace before and after the actual JSON code.

Hint: You might want to use sepBy0 instead of literally implementing jsons and items.

Example: If you have a file example.json with content

{
"foo": 42,
"bar": [1, 2, false, null],
"baz": "boo"

}

then you should get the following output when parsing it:

>>> runParserEnd json' <$> readFile "example.json"
[

JObject [
("foo", JInt 42),
("bar", JList [JInt 1, JInt 2, JBool False, JNull]),
("baz", JString "boo")

]
]
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