
Prof. Dr. Peter Thiemann
Hannes Saffrich
saffrich@informatik.uni-freiburg.de

Winter Term 2024/25

Functional Programming
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2024/

Exercise Sheet 6

In this exercise we are going to look at functors and monads. This exercise sheet is a bit longer,
but important as many subsequent chapters of this lecture build on monads.

Functors

In Haskell, a functor is represented by a type constructor f of kind * -> *, i.e. something that
takes a type and returns a type, e.g. List or Maybe, together with an operation

fmap :: (a -> b) -> (f a -> f b)

which satisfies the functor laws:

fmap g . fmap h = fmap (g . h)
fmap id = id

Usually, a good intuition for a functor is something, which behaves like a container, i.e. that f a
describes some kind of container with elements of type a. With this intuition, fmap g xs means
applying the function g to each element of the container. The functor laws ensure that this is all
that fmap does, e.g. that fmap for lists does not change the container structure, e.g. by removing
or duplicating elements of the list.

Monads

In Haskell, a monad is represented by a functor m together with two operations

return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

which satisfy the monad laws:

mx >>= return = mx
return x >>= f = f x
(mx >>= g) >>= h = m >>= (\x -> g x >>= h)

Usually, a good intuition for a value of type m a is something, which behaves like an effectful
computation that when run produces a result of type a. Which effects these computations can
cause depends on the monad m itself, e.g. Maybe models computations, which can fail, and State
models computations, which can implicitly read and write from some mutable state.

Every monad is also a functor, but not vice-versa: by stretching our intuition of a container, we
can view a computation that produces a value of type a as a container with elements of type a.
Mapping a function over such a computation, will yield another computation, which first runs
the original computation, potentially causing effects, and then applying the function to the result
without causing additional effects.

Type Class Hierarchy

Functors and monads form a type class hierarchy, similar as we have seen with semigroups and
monoids in a previous exercise. However, in the standard library, there is another concept in-
between, called an applicative functor. Each monad is an applicative functor, and each applicative
functor is a functor, but not vice versa. Hence, the type class hierarchy looks as followed:

1

mailto:saffrich@informatik.uni-freiburg.de
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2024/

class Functor f where
fmap :: (a -> b) -> f a -> f b

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

class Applicative m => Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

As we did not cover applicative functors yet, you can for now just leave the pure and (<*>)
functions undefined when writing instances for monads, e.g.

instance Functor Maybe where
fmap = myFmap

instance Applicative Maybe where
pure = undefined
(<*>) = undefined

instance Monad Maybe where
return = myReturn
(>>=) = myBind

Note, that you might get a warning when implementing return. You can ignore this warning, as
we will get back to that when we look at applicative functors.

Kleisli Categories

To better understand the monad laws and strengthen our intuition of monads, it can be useful to
look at an alternative definition of monads. One such definition is that of a Kleisli Category, where
we keep return, but replace the bind operator

(>>=) :: m a -> (a -> m b) -> m b

with a composition operator

(<=<) :: (b -> m c) -> (a -> m b) -> (a -> m c)

Contrast the type of the (<=<) operator with that of regular function composition:

(.) :: (b -> c) -> (a -> b) -> (a -> c)

The (<=<) operator allows us to compose functions with side effects of type a -> m b, just like
they were regular functions of type a -> b. Compared to the regular function composition, the
(<=<) operator not only feeds the output of the second function to the input of the first function,
but also composes the effects of both functions for us.

This allows us for each monad m to form a category, where

• objects are Haskell types;

• arrows a -> b are Haskell functions of type a -> m b;

• for each type a, the identity arrow is return :: a -> m a; and

• the composition operator is (<=<).

2

This category is called the Kleisli category for m and its category laws are equivalent to the monad
laws, but easier to understand:

return <=< f = f
f <=< return = f
(f <=< g) <=< h = f <=< (g <=< h)

Sticking with our intuition of monads as effectful computations, the first two laws ensure that
return is not allowed to introduce effects, and the third law ensures that parentheses are not
allowed to influence how effects are composed.

As our original definition of monads and the one as Kleisli categories are equivalent, we can derive
the (<=<) operator from (>>=)

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)
(f <=< g) x = g x >>= f

and vice versa

(>>=) :: Monad m => m a -> (a -> m b) -> m b
mx >>= f = (f <=< (_ -> mx)) ()

Monad APIs

In Haskell, monads are usually defined in their own module exposing an API following a certain
pattern. The following illustrates this by showing this pattern for the State monad:

newtype State s a = ...

instance Functor (State s) where ...
instance Applicative (State s) where ...
instance Monad (State s) where ...

runState :: State s a -> s -> (a, s)

get :: State s s
put :: s -> State s ()
modify :: (s -> s) -> State s ()

The basic idea is that a user of this monad never constructs a State value by hand, but instead
uses the get, put, and modify functions to construct primitive computations. Those computations
can then be manipulated and combined by using the Functor and Monad instances, and are finally
executed via the runState function.

In this case, the primitive computations are:

• get, which retrieves the current state, i.e. it is a computation which keeps a state of type s
and returns a value of type s;

• put, which assigns a new value to the current state, i.e. it is function which takes a new
state of type s, and returns a computation which keeps a state of type s and returns the
uninteresting value (); and

• modify, which takes a function on states and returns a state computation, which changes the
current state by applying the function to it.

3

To run a state computation via runState, we need to provide an initial state value, and in return
get the result of the computation and the final state value.

This API pattern is followed for most monads, with the notable exceptions of Maybe and sometimes
Either.

We will follow this API pattern in the whole exercise, as it makes it clear when we are thinking of
a value of type m a as just a value of type m a vs a computation that produces values of type a
when run.

Exercise 1 (Monad Instances & Applications)

In this exercise, your task is to implement various monads by following the beforementioned API
pattern, and then use their API to write simple functions in monadic style.

1. Lists form a monad that represents non-deterministic (ND) computations. The API for the ND
monad is as followed:

newtype ND a = ND [a]

instance Functor ND where ...
instance Applicative ND where ...
instance Monad ND where ...

runND :: ND a -> [a]

choose :: [a] -> ND a
abort :: ND a

The choose function takes a list and returns a ND computation, which non-deterministically
chooses an element from the list.

The abort function returns a ND computation, which will invalidate non-determinstic choices
of previous ND computations, by choosing an element of the empty list.

Running a ND computation yields the list of all possible results that the non-determinstic
computation could produce. This is possible because each ND computation is the list of its
possible outcomes.

Note that runND, choose, and abort are trivial to implement, but the difficulty is in under-
standing how lists represent non-determinstic computations.

Examples:

ex1 :: [Int]
ex1 = runND $ do

x <- choose [1, 2]
y <- choose [10, 20]
return $ x + y

-- ex1 == [11, 21, 12, 22]

ex2 :: [Int]
ex2 = do runND $ do

x <- choose [1..10]
if even x then

return x
else

abort

-- ex2 == [2, 4, 6, 8, 10]

4

Your task is to implement the ND monad as described above and then use it to

• write a function

flipCoin :: ND Bool

which flips a coin by non-deterministically choosing a boolean.

• write a function

flipTwoCoins :: ND (Bool, Bool)

which flips two coins by using the flipCoin function.

• Write a function, which solves the graph coloring problem.

We represent a graph as a map1, which maps each node to the list of its neighbors.

type Graph n = [(n, [n])]

We represent a coloring as a map from nodes to colors

type Coloring n c = [(n, c)]

Given a graph and a list of colors, solving the graph coloring problem means assigning
each node a color, such that all neighbors of that node have different colors.

This problem can be solved by using backtracking (choose and abort) in 9 lines of
Haskell code.

Hint: you might want to use a helper function as followed and recursively walk through
the graph:

solve :: (Eq n, Eq c) => Graph n -> [c] -> ND (Coloring n c)
solve g colors = solve' g colors [] where

solve' g colors coloring = ...

Example:

exGraph :: Graph Int
exGraph = -- 1

[(0, [1,2]) -- / \
, (1, [3,0]) -- 0 3
, (2, [3,0]) -- \ /
, (3, [1,2]) -- 2
]

exColorings :: [Coloring Int String]
exColorings = runND $ solve exGraph ["red", "blue"]

-- exColorings is
-- [[(3,"red"), (2,"blue"), (1,"blue"), (0,"red")]
-- , [(3,"blue"), (2,"red"), (1,"red"), (0,"blue")]

1To avoid using the containers library, we simply represent a map as an association list, i.e. a list of key-value-pairs.
The lookup function allows to retrieve a value from a key and is imported by default:

lookup :: Eq k => k -> [(k, v)] -> Maybe v

5

--]

2. The Maybe type forms a monad that represents partiality, i.e. computations which may fail.
A total function of type a -> Maybe b can be seen as a partial function of type a -> b.

The API for the partiality monad is as followed:

newtype Partial a = Partial (Maybe a)

runPartial :: Partial a -> Maybe a

instance Functor Partial where ...
instance Applicative Partial where ...
instance Monad Partial where ...

failure :: Partial a

Your task is to implement the Partial monad as described above and then use it to

• write a function

(!?) :: [a] -> Int -> Partial a

such that xs !? i tries to retrieve the element at index i of the list xs and fails if the
index is out of bounds.

• write a function

getCell :: [[a]] -> Int -> Int -> Partial a

which takes a matrix (list of rows) and a x and y coordinate and tries to retrieve the
cell at row y and column x. Use do notation and the (!?) operator from the previous
sub-exercise.

3. The Either e type forms a monad that represents computations which may fail with an
exception of type e.

Recall, that the Either type is defined as

data Either a b = Left a | Right b

The API for the exception monad is as followed:

newtype Exception e a = Exception (Either e a)

runException :: Exception e a -> Either e a

instance Functor Partial where ...
instance Applicative Partial where ...
instance Monad Partial where ...

raise :: e -> Exception e a
withException :: Partial a -> e -> Exception e a

The withException function allows to convert between the Partial and Exception e monad
by providing an exception value for the failure case of the partiality monad.

Your task is to implement the Exception e monad as described above and then use it to

6

• write a function

validatePassword :: String -> Exception String ()

which takes a password and checks if it is at least 8 characters long and if it contains
both letters and digits. If one of those conditions is not satisfied, it should raise an
exception consisting of a string, which describes the reason for failure.

• rewrite the getCell function from the previous subexercise such that if getCell fails, it
will signal whether the row or the column index was out of bounds, e.g.

data MatrixError = InvalidRowIndex | InvalidColIndex
getCell' :: [[a]] -> Int -> Int -> Exception MatrixError a

Use the withException function in combination with the (!?) function from the previous
exercise.

4. Functions of type s -> (a, s) form a monad in a that represents computations, which are
allowed to manipulate an implicit state of type s.

The API for the state monad is as followed:

newtype State s a = State (s -> (a, s))

instance Functor (State s) where ...
instance Applicative (State s) where ...
instance Monad (State s) where ...

runState :: State s a -> s -> (a, s)

get :: State s s
put :: s -> State s ()
modify :: (s -> s) -> State s ()

Note that the State monad merely encapsulates how a function in a pure functional language
allows to work with state in the first place, e.g. a function which takes an argument of type
Int, modifies a String, and returns a result of type Bool is something, which we would
naturally express in a functional language as

f :: Int -> String -> (Bool, String)

The state monad just encapsulates this pattern of threading the String data through the
function and allows us to write

f :: Int -> State String Bool

and then use do-notation inside of f to access and modify the String value in an imperative
style.

Your task is to implement the State s monad as described above and then implement the
following:

• On the website you can find the file WhileInterp.hs, which contains an interpreter for
a simple language with variables, while-loops, and assignments.

The datatypes are as followed:

7

type Var = String

data Val = VInt Int
| VBool Bool
| VUnit
| VError String
deriving (Eq, Show)

data Op = Add | Sub | Less
deriving (Eq, Show)

data Expr = EVar Var
| EVal Val
| EOp Expr Op Expr
| EAssign Var Expr
| EWhile Expr Expr
| ESeq Expr Expr
deriving (Eq, Show)

type Env = [(Var, Val)]

Variables are represented as strings. Values are integers, booleans, unit (like () in
Haskell) and error values carrying an error message. Binary operators are addition,
subtraction, and inequality. An expression is either a variable EVar x, a value EVal v, an
application of a binary operator EOp e1 op e2, an assignment expression EAssign x e,
a while-expression EWhile e1 e2, or a sequence expression ESeq e1 e2. Environments
map each variable to its current value, and are used during evaluation to propagate
variable values from assignments to variable uses.

To keep it simple, we do not distinguish between statements and expressions, but instead
assignment and while-loops are simply expressions, which evaluate to the unit value.
The ESeq e1 e2 expression acts like a semicolon, and will first evaluate e1, then throw
the resulting value away and evaluate e2.

If a binary operation is called with arguments of incorrect types, e.g. adding an integer
and a boolean, it will evaluate to a VError value. Similarly, if a VError value appears as
the argument of an operator application, the whole operator application will evaluate to
that VError value, which propagtes the error further to the root of the expression tree.

The following shows a program in this language first in pseudo-code, and then as an
expression of type Expr:

Pseudo-Code:
x = 0;
while x < 10 (x = x + 1);
x + 5

Haskell:
example :: Expr
example = ESeq (EAssign "x" $ EVal $ VInt 0)

(ESeq (EWhile (EOp (EVar "x") Less (EVal $ VInt 10))
(EAssign "x" $ EOp (EVar "x") Add (EVal $ VInt 1)))

(EOp (EVar "x") Add (EVal $ VInt 5)))

Evaluating this expression in the empty environment yields the value of the expression
and the final environment, i.e. the values of the variables after the evaluation finished:

8

>>> eval example []
(VInt 15, [("x", VInt 10)])

Rewrite the eval function from WhileInterp.hs in monadic style by using the State Env
monad to avoid threading the Env through the function by hand:

eval' :: Expr -> State Env Val
eval' = ...

9

