
Prof. Dr. Peter Thiemann
Hannes Saffrich
saffrich@informatik.uni-freiburg.de

Winter Term 2024/25

Functional Programming
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2024/

Exercise Sheet 5

Exercise 1 (AVL Trees & Quickcheck)

In this exercise, we are implementing AVL search trees, i.e. binary search trees, where the insert
operation ensure that the tree remains balanced, which allows it to have a O(log(N)) runtime.

As the rebalancing operations are a bit more complicated, we are using QuickCheck to test for
correctness.

1. Make yourself familiar with the basic ideas of how AVL trees work by searching the internet.
The precise details are only relevant for the last subexercise.

2. We represent AVL trees similarly as we have represented binary trees in the lecture:

data AVLTree a = Leaf | Branch Int (AVLTree a) a (AVLTree a)

In contrast to the lecture, a Branch has an additional Int field, which represents the height
of the branch. This allows computing the height of a tree in constant time, which in turn
allows to implement the rebalancing insert function in O(log(N)) time by using this cached
height instead of recomputing it for all subtrees.

Implement an Arbitrary instance to randomly generate AVL trees, i.e. AVLTrees, which are
balanced, ordered, have unique elements, and correct height annotations.

Define QuickCheck properties, which test that the generated trees satisfy the above mentioned
properties.

Hint: to randomly generate AVL trees, we recommend to first generate sorted lists with
unique elements, and then repeatedly split them to generate an AVL tree.

Hint: make sure that the balancing is also decided randomly, e.g. that for the list [1,2] it is
possible to generate both

• Branch Leaf 1 (Branch Leaf 2 Leaf); and

• Branch (Branch Leaf 1 Leaf) 2 Leaf

For this purpose you might want to flip a coin by using the Arbitrary instance for Bool.

Hint: You can think of Gen a very much like IO a: it describes some kind of computation,
which when run will produce a value of type a, and you can use do-notation, (>>=), and
return to combine such computations.

3. In this exercise, we use a test-driven development approach, i.e. we are defining tests before
we actually implement the functions for AVL trees.

To keep our code typechecking during this phase, we define stubs for the functions on AVL
trees, i.e. we specify their type signatures, but set their bodies to undefined.

Generate property tests for the following function stubs:

1

mailto:saffrich@informatik.uni-freiburg.de
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2024/


insert :: Ord a => a -> AVLTree a -> AVLTree a
insert = undefined

contains :: Ord a => a -> AVLTree a -> Bool
contains = undefined

merge :: Ord a => AVLTree a -> AVLTree a -> AVLTree a
merge = undefined

toList :: AVLTree a -> [a]
toList = undefined

-- Assumes the list is sorted and all elements are unique.
fromList :: [a] -> AVLTree a
fromList = undefined

Hint: Some examples of useful properties are:

a) returned AVLTrees should satisfy the AVLTree properties, i.e. they should be balanced,
ordered, have unique elements, and correct height annotations;

b) some of those functions interact in a predictable way, e.g. after inserting an element, the
tree should contain the element;

c) some of those functions are (partial) inverses of each other, e.g. converting a sorted list
with unique elements to a tree and back should yield the same list.

4. Implement the function stubs from the previous exercise.

2


