
Functional Programming

Introduction
Hannes Saffrich

University of Freiburg
Department of Computer Science

Programming Languages

18. Oktober 2024

Hannes Saffrich Introduction 2024-10-18 1 / 41

Haskell Overview
▶ Algebraic datatypes
▶ Pattern matching
▶ Polymorphism
▶ Type classes
▶ Global and principal type inference
▶ Lazy evaluation
▶ Pure functional language
▶ Extensible effect system (monads)
▶ Many crazy typesystem extensions

▶ Higher Kinded Types
▶ Rank-N-Polymorphism
▶ Linear Types
▶ Type Families
▶ DataKinds
▶ Dependent Types
▶ . . .
Hannes Saffrich Introduction 2024-10-18 2 / 41

Haskell Overview
▶ Algebraic Datatypes (Python Motivation)

@dataclass
class MouseClick:

x: int
y: int

@dataclass
class KeyPress:

key: Key

type Event = MouseClick | KeyPress

my_event: Event = MouseClick(23, 42)

Hannes Saffrich Introduction 2024-10-18 3 / 41

Haskell Overview
▶ Pattern Matching (Python Motivation)

def event_to_str(e: Event) -> str:
match e:

case MouseClick(-42, y):
return "Burn the witch!"

case MouseClick(x, y, btn):
return "Clicked at " + str((x, y))

case KeyPress(key):
return str(key)

Hannes Saffrich Introduction 2024-10-18 4 / 41

Haskell Overview
▶ Algebraic Datatypes

data Event = MouseClick Int Int | KeyPress Key

myEvent :: Event
myEvent = MouseClick 23 42

▶ Pattern Matching
eventToStr :: Event -> String
eventToStr e = case e of

MouseClick -42 y -> "Burn the witch!"
MouseClick x y -> "Clicked at " ++ show (x, y)
KeyPress key -> "Pressed key " ++ show key

Hannes Saffrich Introduction 2024-10-18 5 / 41

Haskell Overview
▶ Polymorphism

▶ Identity in Python:
def id[A](x: A) -> A:

return x

▶ Identity in Haskell:
id :: a -> a
id x = x

Hannes Saffrich Introduction 2024-10-18 6 / 41

Haskell Overview
▶ Polymorphism

▶ Identity in Python:
def id[A](x: A) -> A:

return x

▶ Identity in Haskell:
id :: forall a. (a -> a)
id x = x

Hannes Saffrich Introduction 2024-10-18 7 / 41

Haskell Overview
▶ Type Classes

class Show a where
show :: a -> String

instance Show Event where
show e = eventToStr e

instance Show Int where ... -- Defined in stdlib

showBoth :: (Show a, Show b) => a -> b -> String
showBoth x y = show x ++ ", " ++ show y

showBoth Left 42 -- evaluates to "Left, 42"

▶ Recall 42 :: Num a => a
and 42.0 :: Fractional a => a

Hannes Saffrich Introduction 2024-10-18 8 / 41

Haskell Overview
▶ Global and principal type inference

▶ We can write
showBoth x y = show x ++ ", " ++ show y

▶ and Haskell figures out that
showBoth :: (Show a, Show b) => a -> b -> String

▶ However, by convention type annotations are written for top-level
functions, which helps as documentation and improves error messages

Hannes Saffrich Introduction 2024-10-18 9 / 41

Haskell Overview
▶ Lazy Evaluation

▶ Consider the following function
f :: Bool -> Int -> Int
f b x = if b then x else 0

which is called as f False (5 + 2)
▶ Normally this happens:

f False (5 + 2)
→ f False 7
→ if False then 7 else 0
→ 0

▶ With lazy evaluation this happens:
f False (5 + 2)

→ if False then (5 + 2) else 0
→ 0

Hannes Saffrich Introduction 2024-10-18 10 / 41

Haskell Overview
▶ Pure Functional Language

▶ Functions have no sideeffects
▶ Same input implies same output
▶ This allows for nice equational reasoning, e.g.

f x + f x === let y = f x in y + y
▶ A rare property among production-grade languages:

Haskell, Nix, Agda, Coq, Lean

Hannes Saffrich Introduction 2024-10-18 11 / 41

wait... wut?
▶ If there are no side effects . . .
▶ . . . how is it possible to write any kind of reasonable program?

Hannes Saffrich Introduction 2024-10-18 12 / 41

Haskell Overview
▶ Extensible Effect System (Monads)

▶ Idea
▶ functions don’t actually perform side effects, but instead return a

description of the side effects as data
▶ this data is propagated to the main funtion which again returns it
▶ the runtime system reads the descriptions and actually executes them

▶ Example: Reading a file into a string
readFile :: FilePath -> IO String

▶ Calling readFile "foo.txt" does not read the file, but instead
returns an IO action, which only when executed reads the file and
returns a string

▶ Multiple actions can be combined and are finally returned from main,
which causes them to be exectued by the runtime system.

▶ The main expression has type
main :: IO ()

Hannes Saffrich Introduction 2024-10-18 13 / 41

Haskell Overview
▶ Extensible Effect System (Monads)

▶ What does this mean for purity? In particular, for the equation
f x + f x === let y = f x in y + y

▶ Let’s consider the following function to print to the terminal:
putStrLn :: String -> IO ()

▶ A “hello world” looks as follows:
main :: IO ()
main = putStrLn "Hello!"

▶ What if we want to call putStrLn multiple times?
▶ The >> operator allows to combine IO actions

(>>) :: IO a -> IO b -> IO b

▶ This allows us to write the following two programs:
main = putStrLn "Hello!" >> putStrLn "Hello!"
main = let x = putStrLn "Hello!" in

x >> x
Hannes Saffrich Introduction 2024-10-18 14 / 41

Why Learn Haskell?
▶ Some language constructs are just generally great for programming

▶ Algebraic Datatypes, Pattern Matching, Type Classes, Higher-Order
Functions

▶ All available in Rust
▶ Some design concepts can also be enlightening in other languages

▶ Learning the trade-offs of programming in a pure functional style
▶ Learning the design patterns to make this work properly
▶ It’s a different way of thinking about programming

▶ If you want to, you can actually program in Haskell and find a job
▶ Small amount of companies, but also small amount of Haskell

programmers
▶ Many people, who went through the journey of learning Haskell, feel

like it made them a better programmer in general
▶ Gateway drug to learning a theorem prover / dependently-typed

language like Agda, Coq or Lean, which have to be pure to not allow
for proving wrong theorems

Hannes Saffrich Introduction 2024-10-18 15 / 41

Built-in Types
▶ Booleans (Bool)
▶ Integers (Int and Integer)
▶ Floats (Float and Double)
▶ Tuples (e.g. (Int, Bool, Float))
▶ Lists (e.g. [Int])
▶ Characters and Strings (Char and String)
▶ Functions (e.g. Int -> Int)

Hannes Saffrich Introduction 2024-10-18 16 / 41

Built-in Types
Booleans

▶ Values
True :: Bool
False :: Bool

▶ Logical connectives
not True -- Negation
True && False -- Conjunction
True || False -- Disjunction

▶ If-Then-Else expression
if True then 0 else 1

▶ Short circuiting (like everything because of lazy evaluation)
▶ Defined by the algebraic datatype

data Bool = True | False

Hannes Saffrich Introduction 2024-10-18 17 / 41

Built-in Types
Integers

▶ Values
5 :: Int
5 :: Integer
...

▶ Int is a fixed size 30bit integer with overflow
▶ Integer is a arbitrary sized bigint implementation
▶ Typical Operations

1 + 1 1 - 1 1 * 1
5 / 2 -- returns 2.5
5 ‘div‘ 2 -- returns 2
5 ‘mod‘ 2 -- returns 1
2 ^ 4 -- returns 16
1 > 1 1 >= 1 1 == 1 1 != 1

Hannes Saffrich Introduction 2024-10-18 18 / 41

Built-in Types
Floats

▶ Values
5.0 :: Float
5.0 :: Double
...

▶ Float is a 32bit floating point number
▶ Double is a 64bit floating point number
▶ Basically same operations as on integers

(*) :: Num a => a -> a -> a
(^) :: (Num a, Integral b) => a -> b -> a
(/) :: Fractional a => a -> a -> a

Hannes Saffrich Introduction 2024-10-18 19 / 41

Built-in Types
Tuples

▶ Values
() :: ()
(1, 2) :: (Int, Float)
(1, 2, True) :: (Int, Int, Bool)
...

▶ Float is a 32bit floating point number
▶ Double is a 64bit floating point number
▶ Basically same operations as on integers

(*) :: Num a => a -> a -> a
(^) :: (Num a, Integral b) => a -> b -> a
(/) :: Fractional a => a -> a -> a

Hannes Saffrich Introduction 2024-10-18 20 / 41

Built-in Types
Lists

▶ Values
[] :: [Int]
[] :: [Bool]
2 : [] :: [Int]
3 : (2 : []) :: [Int]
3:2:[] :: [Int]
[3, 2] :: [Int]

▶ Careful: Linked lists, not arrays!
▶ Standard library functions

[1, 2] ++ [3, 4] -- returns [1, 2, 3, 4] (list concat)
[1, 2] !! 0 -- returns 1 (list indexing)
length [1, 2] -- returns 2 (list length)
... -- many more in module Data.List

Hannes Saffrich Introduction 2024-10-18 21 / 41

Built-in Types
Lists

▶ Values
[] :: [Int]
[] :: [Bool]
2 : [] :: [Int]
3 : (2 : []) :: [Int]
3:2:[] :: [Int]
[3, 2] :: [Int]

▶ Behave as if they were defined by the Algebraic Datatype
data List a = Nil | Cons a (List a)

▶ Just instead of
▶ List a we write [a]
▶ Nil we write []
▶ Cons 3 Nil we write 3 : [], etc.
Hannes Saffrich Introduction 2024-10-18 22 / 41

Built-in Types
Characters and Strings

▶ Values
’a’ :: Char
"ab" :: String

▶ Characters are Unicode
▶ String is a type alias for [Char]
▶ "ab" is literally the same as [’a’, ’b’]
▶ Sounds insane, but sometimes reasonable, because of lazy evaluation
▶ the text package on Hackage provides the usual UTF-8 String

datatype

Hannes Saffrich Introduction 2024-10-18 23 / 41

Built-in Types
Functions

▶ Values
\x -> x + 1 :: Int -> Int

▶ The backslash \ looks sort of like a lambda λ

▶ Top-level function = global constant variable with function value, e.g.
increment :: Int -> Int
increment = \x -> x + 1

▶ Syntactic sugar to make it look nicer:
▶ Top-level function = global constant variable with function value, e.g.

increment :: Int -> Int
increment x = x + 1

Hannes Saffrich Introduction 2024-10-18 24 / 41

Built-in Types
Functions

▶ Haskell supports only single-parameter functions
▶ Functions taking multiple arguments can be encoded in two ways:

1. As curried functions, e.g.
add :: Int -> (Int -> Int)
add = \x -> (\y -> (x + y))

test :: Int
test = (add 2) 3

Hannes Saffrich Introduction 2024-10-18 25 / 41

Built-in Types
Functions

▶ Haskell supports only single-parameter functions
▶ Functions taking multiple arguments can be encoded in two ways:

1. As curried functions, e.g.
add :: Int -> Int -> Int
add = \x -> \y -> x + y

test :: Int
test = add 2 3

Hannes Saffrich Introduction 2024-10-18 26 / 41

Built-in Types
Functions

▶ Haskell supports only single-parameter functions
▶ Functions taking multiple arguments can be encoded in two ways:

1. As curried functions, e.g.
add :: Int -> Int -> Int
add = \x y -> x + y

test :: Int
test = add 2 3

Hannes Saffrich Introduction 2024-10-18 27 / 41

Built-in Types
Functions

▶ Haskell supports only single-parameter functions
▶ Functions taking multiple arguments can be encoded in two ways:

1. As curried functions, e.g.
add :: Int -> Int -> Int
add x y = x + y

test :: Int
test = add 2 3

Hannes Saffrich Introduction 2024-10-18 28 / 41

Built-in Types
Functions

▶ Haskell supports only single-parameter functions
▶ Functions taking multiple arguments can be encoded in two ways:

1. As curried functions, e.g.
add :: Int -> Int -> Int
add x y = x + y

test :: Int
test = add 2 3

2. As uncurried functions, e.g.
add :: (Int, Int) -> Int
add = \xy -> fst xy + snd xy

test :: Int
test = add (2, 3)

Hannes Saffrich Introduction 2024-10-18 29 / 41

Built-in Types
Functions

▶ Haskell supports only single-parameter functions
▶ Functions taking multiple arguments can be encoded in two ways:

1. As curried functions, e.g.
add :: Int -> Int -> Int
add x y = x + y

test :: Int
test = add 2 3

2. As uncurried functions, e.g.
add :: (Int, Int) -> Int
add = \(x, y) -> x + y

test :: Int
test = add (2, 3)

Hannes Saffrich Introduction 2024-10-18 30 / 41

Built-in Types
Functions

▶ Haskell supports only single-parameter functions
▶ Functions taking multiple arguments can be encoded in two ways:

1. As curried functions, e.g.
add :: Int -> Int -> Int
add x y = x + y

test :: Int
test = add 2 3

2. As uncurried functions, e.g.
add :: (Int, Int) -> Int
add (x, y) = x + y

test :: Int
test = add (2, 3)

Hannes Saffrich Introduction 2024-10-18 31 / 41

Built-in Types
Functions

▶ Haskell supports only single-parameter functions
▶ Functions taking multiple arguments can be encoded in two ways:

1. As curried functions, e.g.
add :: Int -> Int -> Int
add x y = x + y

test :: Int
test = add 2 3

2. As uncurried functions, e.g.
add :: (Int, Int) -> Int
add(x, y) = x + y

test :: Int
test = add(2, 3)

Hannes Saffrich Introduction 2024-10-18 32 / 41

Built-in Types
Functions

▶ In Haskell people usually use curried functions
▶ Those are nicer for partial applications:

add :: Int -> Int -> Int
add x y = x + y

inc :: Int -> Int
inc = add 1

▶ Compared to the uncurried version:
add :: (Int, Int) -> Int
add (x, y) = x + y

inc :: Int -> Int
inc x = add (1, x)

Hannes Saffrich Introduction 2024-10-18 33 / 41

Built-in Types
Functions

▶ Custom operators can be defined by using non-alphanumeric symbols,
e.g.

(*+) :: Int -> Int -> Int
x *+ y = x * y + y

infixr 9 *+ -- make *+ right-associative and
-- bind with strength 9

test :: Int
test = 5 *+ 3 *+ 4 -- same as 5 *+ (3 *+ 4)

Hannes Saffrich Introduction 2024-10-18 34 / 41

Built-in Types
Functions

▶ Regular functions can also be used infix by enclosing them with
backticks, e.g.

max :: Int -> Int -> Int
max x y = if x > y then x else y

test :: Int
test = max 5 2
test = 5 ‘max‘ 2

▶ This is how the div and mod functions are commonly used
▶ Operators can be partially applied by using operator sections

inc :: Int -> Int
inc = (1+) -- (1+) is equivalent to \x -> 1 + x

Hannes Saffrich Introduction 2024-10-18 35 / 41

Basic Language Constructs
Let Expression

▶ let x = e1 in e2
▶ Binds variable x to have the value of expression e1 in expression e2
▶ Allows to bind multiple variables at once and supports optional type

signatures
test :: Int
test =

let
x :: Int
x = 3
y :: Int
y = 3

in x + y

Hannes Saffrich Introduction 2024-10-18 36 / 41

Basic Language Constructs
Pattern Matching

▶ The case expression can be used for pattern matching, e.g.
oneZero :: (Int, Int) -> Bool
oneZero p = case p of

(0, y) -> True
(x, 0) -> True
_ -> False

▶ Patterns can also be used everywhere where variables are defined
▶ In functions:

oneZero :: (Int, Int) -> Bool
oneZero (0, y) = True
oneZero (x, 0) = True
oneZero _ = False

▶ In let-expressions:
oneZero :: (Int, Int) -> Bool
oneZero p = let (x, y) = p in

x == 0 || y == 0
Hannes Saffrich Introduction 2024-10-18 37 / 41

Basic Language Constructs
Pattern Matching

▶ Pattern guards allow integrating boolean expressions into pattern
clauses

▶ Absolute value without pattern guards:
abs :: Int -> Int
abs x = if x > 0 then x else -x

▶ Absolute value wit pattern guards:
abs :: Int -> Int
abs x | x >= 0 = x

| x < 0 = -x

Hannes Saffrich Introduction 2024-10-18 38 / 41

Basic Language Constructs
Pattern Matching

▶ Pattern guards allow integrating boolean expressions into pattern
clauses

▶ Absolute value without pattern guards:
abs :: Int -> Int
abs x = if x > 0 then x else -x

▶ Absolute value wit pattern guards:
abs :: Int -> Int
abs x | x >= 0 = x
abs x | x < 0 = -x

Hannes Saffrich Introduction 2024-10-18 39 / 41

Basic Language Constructs
Pattern Matching

▶ Pattern guards allow integrating boolean expressions into pattern
clauses

▶ Absolute value without pattern guards:
abs :: Int -> Int
abs x = if x > 0 then x else -x

▶ Absolute value wit pattern guards:
abs :: Int -> Int
abs x | x >= 0 = x
abs x = -x

Hannes Saffrich Introduction 2024-10-18 40 / 41

Basic Language Constructs
Pattern Matching

▶ Pattern guards allow integrating boolean expressions into pattern
clauses

▶ Absolute value without pattern guards:
abs :: Int -> Int
abs x = if x > 0 then x else -x

▶ Absolute value wit pattern guards:
abs :: Int -> Int
abs x | x >= 0 = x
abs x | otherwise = -x

Hannes Saffrich Introduction 2024-10-18 41 / 41

