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Parser
▶ A parser checks if a word is part of a language
▶ An alphabet Σ is a set
▶ The elements a ∈ Σ are called letters or terminal symbols
▶ A word w is a list of letters, i.e. w ∈ Σ∗

▶ A language L is a set of words, i.e. L ⊆ Σ∗

▶ A word w is part of the language L if w ∈ L
▶ Typically, a language is described by a grammar
▶ Typically, a parser produces additional information:

▶ if a word is in the language, it produces one or more syntax trees
▶ if a word is not in the language, it produces an error message

describing why it is not in the language
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Lexer
▶ A lexer is an optional preprocessing step for a parser
▶ It translates words from one alphabet to words of another alphabet

Σ∗ → ∆∗

▶ Typically, the input words are actual strings, i.e. Σ∗ = str
▶ The output letters t ∈ ∆ are called Tokens
▶ A lexer serves two purposes:

▶ Allow the parser to be based on a more readable grammar, e.g. by
removing whitespace and comments, and treating numbers or variable
names as single letters

▶ Increase performance as some parsing tasks can be done more
efficiently in a lexer

▶ Typically, a lexer is described by a mapping from regular expressions
to tokens
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Running Example: A Circuit Description Language

⟨prog⟩ ::= (⟨expr⟩;)∗

⟨expr⟩ ::= True

| False

| ⟨var⟩
| !⟨expr⟩
| ⟨expr⟩&⟨expr⟩
| ⟨expr⟩|⟨expr⟩

Example Program:

a & b;
!a | b & c;
True;
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Lexer Example
Input String
"
a & b;
!a | b & c;

True;
"

Output Tokens
[

Id(’a’), And(), Id(’b’), Semicolon(),
Not(), Id(’a’), Or(), Id(’b’), And(),

Id(’c’), Semicolon(),
True(), Semicolon(),

]

Lexer Description (Semi-Formal)
Id = "[a-zA-Z][a-zA-Z0-9]*"
True = "True"
False = "False"
And = "&"
Or = "\|"
Not = "!"
Semicolon = ";"
Ignore1 = "[ \t\n]+"
Ignore2 = "#[^\n]*\n"
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Lexer Implementation
▶ Let’s write a lexer!
▶ ... or to be more precise: a lexer library!
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Grammars: Definition
▶ Typically, languages are specified as grammars
▶ Formally, a grammar is a tuple (N, Σ, S, P) where

▶ N is a finite set of non-terminal symbols
▶ Σ is a set of terminal symbols
▶ S ∈ N is the start symbol
▶ P ⊆ (N ∪ Σ)∗ × (N ∪ Σ)∗ are the production rules

▶ Example:
▶ N = {⟨prog⟩, ⟨expr⟩, ⟨var⟩}
▶ Σ = {True, False, ;, &, |, a, b, . . .}
▶ S = ⟨prog⟩ is the start symbol
▶ P contains the following rules:

⟨prog⟩ →
⟨prog⟩ → ⟨expr⟩;⟨prog⟩
⟨expr⟩ → True

⟨expr⟩ → False

⟨expr⟩ → ⟨var⟩

⟨expr⟩ → !⟨expr⟩
⟨expr⟩ → ⟨expr⟩&⟨expr⟩
⟨expr⟩ → ⟨expr⟩|⟨expr⟩
⟨var⟩ → Var(_)
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Grammars: Language
▶ The language of a grammar is the set of words that can be derived

from the start symbol by applying production rules
▶ Example: ⟨prog⟩ ⇒ ⟨expr⟩;⟨prog⟩

⇒ ⟨expr⟩;
⇒ ⟨expr⟩&⟨expr⟩;
⇒ ⟨var⟩&⟨expr⟩;
⇒ foo&⟨expr⟩;
⇒ foo&⟨var⟩;
⇒ foo&bar;

(2)

(7)

(5)

foo

& (5)

bar

; (1)

▶ Rules:
⟨prog⟩ → (1)
⟨prog⟩ → ⟨expr⟩;⟨prog⟩ (2)
⟨expr⟩ → True (3)
⟨expr⟩ → False (4)
⟨expr⟩ → ⟨var⟩ (5)

⟨expr⟩ → !⟨expr⟩ (6)
⟨expr⟩ → ⟨expr⟩&⟨expr⟩ (7)
⟨expr⟩ → ⟨expr⟩|⟨expr⟩ (8)
⟨var⟩ → Var(_) (9)
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Grammars: EBNF Notation
▶ The Extended Backus–Naur form (EBNF) is a more concise notation

for writing down the production rules of a grammar
▶ Multiple rules with the same left side are combined by writing the

right side of the rule as a regular expression over the alphabet N ∪ Σ
▶ Our example grammar in EBNF notation:

⟨prog⟩ ::= (⟨expr⟩;)∗

⟨expr⟩ ::= True | False | ⟨var⟩ | !⟨expr⟩ | ⟨expr⟩&⟨expr⟩ | ⟨expr⟩|⟨expr⟩
⟨var⟩ ::= Var(_)

▶ Our example grammar in rule notation:
⟨prog⟩ →
⟨prog⟩ → ⟨expr⟩;⟨prog⟩
⟨expr⟩ → True

⟨expr⟩ → False

⟨expr⟩ → ⟨var⟩

⟨expr⟩ → !⟨expr⟩
⟨expr⟩ → ⟨expr⟩&⟨expr⟩
⟨expr⟩ → ⟨expr⟩|⟨expr⟩
⟨var⟩ → Var(_)
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Grammars: Ambiguity
▶ A grammar is ambiguous, if a word can be derived in multiple ways
▶ Our example grammar is actually ambiguous...

⟨prog⟩ ::= (⟨expr⟩;)∗

⟨expr⟩ ::= True | False | ⟨var⟩ | !⟨expr⟩ | ⟨expr⟩&⟨expr⟩ | ⟨expr⟩|⟨expr⟩
⟨var⟩ ::= Var(_)

▶ The word x & y & z; can be derived as
(x & y) & z; and x & (y & z);

▶ Even worse, the word x & y | z; can be derived as
(x & y) | z; and x & (y | z);
where only the first one is valid (“and” binds stronger than “or”)

▶ This is no problem if the grammar only used to describe abstract
syntax tree data types, but it matters for parsing

▶ We can fix this by slightly adjusting the grammar to capture the
concrete syntax
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Grammars: Ambiguity (Fix 1)
▶ Grammar for abstract syntax (ambiguous):

⟨prog⟩ ::= (⟨expr⟩;)∗

⟨expr⟩ ::= True | False | ⟨var⟩ | !⟨expr⟩ | ⟨expr⟩&⟨expr⟩ | ⟨expr⟩|⟨expr⟩
⟨var⟩ ::= Var(_)

▶ Grammar for concrete syntax (unambiguous):

⟨prog⟩ ::= (⟨expr⟩;)∗

⟨expr⟩ ::= True | False | ⟨var⟩ | (!⟨expr⟩) | (⟨expr⟩&⟨expr⟩) | (⟨expr⟩|⟨expr⟩)
⟨var⟩ ::= Var(_)

▶ This forbids !a & b | c; and requires us to write
(((!a) & b) | c);
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Grammars: Ambiguity
▶ What we actually want is:

▶ & binds stronger than |, e.g. x & y | z means (x & y) | z
▶ ! binds stronger than &, e.g. !x & y means (!x) & y
▶ & is left-associative, e.g. x & y & z means (x & y) & z
▶ | is left-associative, e.g. x | y | z means (x | y) | z
▶ ! is right-associative, e.g. !!x means ! (! x)

▶ As & and | are associative operators, making them left-associative is
an arbitrary choice, and we could just as well make them
right-associative
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Grammars: Ambiguity (Fix 2)
▶ Grammar for abstract syntax (ambiguous):

⟨prog⟩ ::= (⟨expr⟩;)∗

⟨expr⟩ ::= True | False | ⟨var⟩ | !⟨expr⟩ | ⟨expr⟩&⟨expr⟩ | ⟨expr⟩|⟨expr⟩
⟨var⟩ ::= Var(_)

▶ Grammar for concrete syntax (unambiguous):

⟨prog⟩ ::= (⟨expr⟩;)∗

⟨expr⟩ ::= ⟨expr⟩|⟨expr1⟩ | ⟨expr1⟩
⟨expr1⟩ ::= ⟨expr1⟩&⟨expr2⟩ | ⟨expr2⟩
⟨expr2⟩ ::= !⟨expr2⟩ | ⟨expr3⟩
⟨expr3⟩ ::= True | False | ⟨var⟩ | (⟨expr⟩)

⟨var⟩ ::= Var(_)

▶ This forces !a & b | c; to be parsed as (((!a) & b) | c);
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Grammars: Abstract Syntax vs Concrete Syntax
Example word: !a & (b | c);
Abstract Syntax Tree:

Prog

EAnd

ENot

EVar

a

EOr

EVar

b

EVar

c

In most scenarios, we want to
parse according to the concre-
te syntax, but have the par-
ser generate an abstract syn-
tax tree → attribute grammars

Concrete Syntax Tree:
Prog

Expr1

EAnd

Expr2

ENot

! Expr3

EVar

a

& Expr3

EParen

( EOr

Expr1

Expr2

Expr3

EVar

b

| Expr2

Expr3

EVar

c

)

;
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Grammars: Classification
▶ The Chomsky Hierarchy classifies languages by the kind of production

rules that are required to describe them:
▶ Recursively enumerable languages can be described by rules of the form:

α → β ∀α, β ∈ (N ∪ Σ)∗, α not empty
▶ Parsing is semi-decidable

▶ Context-sensitive languages can be described by rules of the form:

αAγ → αβγ ∀A ∈ N, α, β, γ ∈ (N ∪ Σ)∗, β not empty
▶ Parsing is PSPACE-complete

▶ Context-free languages can be described by rules of the form:

A → α ∀A ∈ N, α ∈ (N ∪ Σ)∗

▶ Parsing with O(n3) worst-case time complexity
▶ Regular languages can be described by rules of the form:

A → a A → aB ∀A, B ∈ N, a ∈ Σ
▶ Parsing with O(n) worst-case time complexity
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Grammars: Classification
▶ We are only concerned with regular and context free languages

▶ Regular languages for lexing
▶ Context-free languages for parsing

▶ The majority of programming languages can be described by a
context-free grammar∗

▶ There are many subclasses of context-free languages, which are more
restrictive, but have better time and space complexity
▶ e.g. the language classes LL, LR, LALR can be parsed in linear time,

but are still powerful enough to parse Java
▶ writing grammars in these subclasses can be more annoying, because

less shapes of production rules are allowed

*: Some require minor preprocessing, like Python (“semantic whitespace”)
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The Earley Parser
▶ Can parse arbitrary context-free grammars
▶ Worst-case time complexity:

▶ O(n3) for ambiguous grammars (we don’t care about those)
▶ O(n2) for unambiguous grammars

▶ Relatively simple (170 lines of Python)
▶ Can be reused as it is basically a grammar interpreter
▶ Nice for prototyping as it supports general context-freee grammars
▶ Probably a bit slow for single files with millions of tokens
▶ Produces multiple syntax trees when used with ambigous grammars
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The Earley Parser: Basic Principle
▶ Loops once over each token of the input word
▶ Tracks which production rules made how much progress in a chart
▶ A chart maps each token index to a set of dotted rules
▶ A dotted rule is a production rule, which

▶ has a marker (dot) in its right side that denotes how much of that rule
was matched by the input so far

▶ is annotated with the token index at which it was first added to the
chart

▶ chart[0] is initialized with dotted rules derivable from the start
symbol

▶ For each token t we compute chart[i] from chart[i-1] by
checking, which rule expects a t after the dot and moving their dot
one symbol to the right [some details omitted]

▶ A word is accepted, if the last entry of chart contains a rule with the
start symbol on the left side and a dot at the end of its right side
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The Earley Parser: Example (1 / 7)
▶ Input word: "True & False ;"
▶ Step 1: Add rules with the start symbol to the chart:

chart[0] = { (0, ⟨prog⟩ → •),
(0, ⟨prog⟩ → •⟨expr⟩;⟨prog⟩) }

▶ Step 2: For each dotted rule in chart[0], also add the rules for all
non-terminals which come immediately after a dot:

chart[0] = chart[0] ∪ { (0, ⟨expr⟩ → •True),
(0, ⟨expr⟩ → •False),
(0, ⟨expr⟩ → •⟨var⟩),
(0, ⟨expr⟩ → •!⟨expr⟩),
(0, ⟨expr⟩ → •⟨expr⟩&⟨expr⟩),
(0, ⟨expr⟩ → •⟨expr⟩|⟨expr⟩) }

▶ Step 3: Repeat until the set doesn’t change anymore:
chart[0] = chart[0] ∪ { (0, ⟨var⟩ → •Var(_)) }
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The Earley Parser: Example (2 / 7)
▶ Input word: "True & False ;"
▶ Step 4: The first input token is True, so search for dotted rules in

chart[0], which have an True after the dot:

(0, ⟨expr⟩ → •True)

▶ Move the dot after the matched symbol:

(0, ⟨expr⟩ → True•)

▶ Add the modified rules to chart[1]:

chart[1] = { (0, ⟨expr⟩ → True•) }
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The Earley Parser: Example (3 / 7)
▶ Input word: "True & False ;"
▶ Step 5: Check for completed rules in chart[1], i.e. rules which have

the dot at the end:

(0, ⟨expr⟩ → True•)

▶ This rule was created at the beginning (0), so search for rules in
chart[0], which have ⟨expr⟩ after the dot:

(0, ⟨expr⟩ → •⟨expr⟩&⟨expr⟩)
(0, ⟨expr⟩ → •⟨expr⟩|⟨expr⟩)

▶ Move the dot after ⟨expr⟩ and add them to chart[1]:

chart[1] = chart[1] ∪ { (0, ⟨expr⟩ → ⟨expr⟩ • &⟨expr⟩)
(0, ⟨expr⟩ → ⟨expr⟩ • |⟨expr⟩) }
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The Earley Parser: Example (4 / 7)
▶ Input word: "True & False ;"
▶ Check if there are rules in chart[1] where the dot is in front of a

non-terminal, and add the rules for the non-terminal also to
chart[1] (same as for chart[0] in the beginning).

▶ There are no such rules.
▶ Repeat Step 5 until the chart[1] doesn’t change anymore.
▶ This is already the case.
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The Earley Parser: Example (5 / 7)
▶ Input word: "True & False ;"
▶ Step 6: The next input token is & so check for rules in chart[1] with

an & after the dot:
(0, ⟨expr⟩ → ⟨expr⟩ • &⟨expr⟩)

▶ Move the • to the right and add to chart[2]:
chart[2] = { (0, ⟨expr⟩ → ⟨expr⟩& • ⟨expr⟩) }

▶ Step 7: Repeat Step 5 for chart[2] until it doesn’t change anymore:
chart[2] = chart[2] ∪ { (2, ⟨expr⟩ → •True),

(2, ⟨expr⟩ → •False),
(2, ⟨expr⟩ → •⟨var⟩),
(2, ⟨expr⟩ → •!⟨expr⟩),
(2, ⟨expr⟩ → •⟨expr⟩&⟨expr⟩),
(2, ⟨expr⟩ → •⟨expr⟩|⟨expr⟩),
(2, ⟨var⟩ → •Var(_)) }
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The Earley Parser: Example (6 / 7)
▶ Input word: "True & False ;"
▶ Step 8: The next input token is False so check for rules in chart[2]

with an & after the dot:

(2, ⟨expr⟩ → •False)

▶ Move the • to the right and add to chart[3]:

chart[3] = { (2, ⟨expr⟩ → False•) }

▶ Step 9: Repeat Step 5 for chart[3] until it doesn’t change anymore:

chart[3] = chart[3] ∪ { (0, ⟨expr⟩ → ⟨expr⟩&⟨expr⟩•),
(2, ⟨expr⟩ → ⟨expr⟩ • &⟨expr⟩),
(2, ⟨expr⟩ → ⟨expr⟩ • |⟨expr⟩),
(0, ⟨prog⟩ → ⟨expr⟩ • ;⟨prog⟩) }
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The Earley Parser: Example (7 / 7)
▶ Input word: "True & False ;"
▶ Step 10: The next input token is ; so check for rules in chart[3]

with an ; after the dot:
(0, ⟨prog⟩ → ⟨expr⟩ • ;⟨prog⟩)

▶ Move the • to the right and add to chart[4]:
chart[4] = { (0, ⟨prog⟩ → ⟨expr⟩; • ⟨prog⟩) }

▶ Step 11: Repeat Step 5 for chart[4] until it doesn’t change anymore:
chart[4] = chart[4] ∪ { (4, ⟨prog⟩ → •),

(4, ⟨prog⟩ → •⟨expr⟩;⟨prog⟩),
(4, ⟨expr⟩ → •True),
. . .

(0, ⟨prog⟩ → ⟨expr⟩;⟨prog⟩•) }

▶ chart[4] contains a rule from the beginning (0) with the start
symbol on the left side and a dot at the end of the right side, hence
the input word is in the language.
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