Compiler Construction

Parsing \& Lexing

Hannes Saffrich
University of Freiburg
Department of Computer Science
Programming Languages

26. April 2024

Parser

- A parser checks if a word is part of a language
- An alphabet Σ is a set
- The elements $a \in \Sigma$ are called letters or terminal symbols
- A word w is a list of letters, i.e. $w \in \Sigma^{*}$
- A language \mathcal{L} is a set of words, i.e. $\mathcal{L} \subseteq \Sigma^{*}$
- A word w is part of the language \mathcal{L} if $w \in \mathcal{L}$
- Typically, a language is described by a grammar
- Typically, a parser produces additional information:
- if a word is in the language, it produces one or more syntax trees
- if a word is not in the language, it produces an error message describing why it is not in the language

Lexer

- A lexer is an optional preprocessing step for a parser
- It translates words from one alphabet to words of another alphabet

$$
\Sigma^{*} \rightarrow \Delta^{*}
$$

- Typically, the input words are actual strings, i.e. $\Sigma^{*}=s t r$
- The output letters $t \in \Delta$ are called Tokens
- A lexer serves two purposes:
- Allow the parser to be based on a more readable grammar, e.g. by removing whitespace and comments, and treating numbers or variable names as single letters
- Increase performance as some parsing tasks can be done more efficiently in a lexer
- Typically, a lexer is described by a mapping from regular expressions to tokens

Running Example: A Circuit Description Language

$$
\begin{aligned}
\langle\text { prog }\rangle::= & (\langle\text { expr }\rangle ;)^{*} \\
\langle\text { expr }\rangle::= & \text { True } \\
& \mid \text { False } \\
& \mid\langle\text { var }\rangle \\
& \mid!\langle\text { expr }\rangle \\
& \mid\langle\text { expr }\rangle \&\langle\text { expr }\rangle \\
& \mid\langle\text { expr }\rangle \mid\langle\text { expr }\rangle
\end{aligned}
$$

Example Program:
a \& b;
!a | b \& c;
True;

Lexer Example

Input String
"
a \& b;
!a | b \& c;

True;
"

Output Tokens

Id('a'), And(), Id('b'), Semicolon(), Not(), Id('a'), Or(), Id('b'), And(), Id('c'), Semicolon(),
True(), Semicolon(),

Lexer Description (Semi-Formal)

Id	$="[a-z A-Z][a-z A-Z 0-9] * "$
True	$="$ True"
False	$=" F a l s e "$
And	$=" \& "$
Or	$=" \backslash \mid "$
Not	$="!"$
Semicolon	$=" ; "$
Ignore1	$="[\backslash \mathrm{t} \backslash \mathrm{n}]+"$
Ignore2	$=" \#[\wedge \backslash n] * \backslash n "$

Lexer Implementation

- Let's write a lexer!
- ... or to be more precise: a lexer library!

Grammars: Definition

- Typically, languages are specified as grammars
- Formally, a grammar is a tuple (N, Σ, S, P) where
- N is a finite set of non-terminal symbols
- Σ is a set of terminal symbols
- $S \in N$ is the start symbol
- $P \subseteq(N \cup \Sigma)^{*} \times(N \cup \Sigma)^{*}$ are the production rules
- Example:
- $N=\{\langle p r o g\rangle,\langle$ expr $\rangle,\langle v a r\rangle\}$
- $\Sigma=\{$ True, False, ;, \&, I, a, b, ...\}
- $S=\langle$ prog \rangle is the start symbol
- P contains the following rules:

$$
\begin{array}{ll}
\langle\text { prog }\rangle \rightarrow & \\
\langle\text { prog }\rangle \rightarrow\langle\text { expr }\rangle ;\langle\text { prog }\rangle & \\
\langle\text { expr }\rangle \rightarrow\langle\text { expr }\rangle \&\langle\text { expr }\rangle \\
\langle\text { expr }\rangle \rightarrow \text { True } & \\
\langle\text { expr }\rangle \rightarrow \text { False }\rangle \rightarrow\langle\text { expr }\rangle \mid\langle\text { expr }\rangle \\
\langle\text { expr }\rangle \rightarrow\langle\text { var }\rangle &
\end{array}
$$

Grammars: Language

- The language of a grammar is the set of words that can be derived from the start symbol by applying production rules
- Example: \langle prog $\rangle \Rightarrow\langle$ expr $\rangle ;\langle$ prog \rangle

$$
\Rightarrow\langle e x p r\rangle ;
$$

$$
\Rightarrow\langle\text { expr }\rangle \&\langle e x p r\rangle ;
$$

$$
\Rightarrow\langle v a r\rangle \&\langle e x p r\rangle ;
$$

$$
\Rightarrow \text { foo\& }\langle\text { expr }\rangle
$$

$$
\Rightarrow \text { foo\& }\langle\text { var }\rangle ;
$$

$$
\Rightarrow \text { foo\&bar }
$$

- Rules:

$$
\begin{aligned}
\langle p r o g\rangle & \rightarrow \\
\langle p r o g\rangle & \rightarrow\langle\text { expr }\rangle ;\langle\text { prog }\rangle \\
\langle\text { expr }\rangle & \rightarrow \text { True } \\
\langle\text { expr }\rangle & \rightarrow \text { False } \\
\langle\text { expr }\rangle & \rightarrow\langle\text { var }\rangle
\end{aligned}
$$

$$
\begin{align*}
\langle\text { expr }\rangle & \rightarrow!\langle\text { expr }\rangle \tag{6}\\
\langle\text { expr }\rangle & \rightarrow\langle\text { expr }\rangle \&\langle\text { expr }\rangle \tag{7}\\
\langle\text { expr }\rangle & \rightarrow\langle\text { expr }\rangle \mid\langle\text { expr }\rangle \tag{8}\\
\langle\text { var }\rangle & \rightarrow \operatorname{Var}\left(_{-}\right) \tag{9}
\end{align*}
$$

Grammars: EBNF Notation

- The Extended Backus-Naur form (EBNF) is a more concise notation for writing down the production rules of a grammar
- Multiple rules with the same left side are combined by writing the right side of the rule as a regular expression over the alphabet $N \cup \Sigma$
- Our example grammar in EBNF notation:

$$
\begin{aligned}
\langle p r o g\rangle & ::=(\langle\text { expr }\rangle ;)^{*} \\
\langle\text { expr }\rangle & ::=\text { True } \mid \text { False } \mid\langle\text { var }\rangle \mid!\langle\text { expr }\rangle \mid\langle\text { expr }\rangle \&\langle\text { expr }\rangle \mid\langle\text { expr }\rangle \mid\langle\text { expr }\rangle \\
\langle\text { var }\rangle & ::=\operatorname{Var}\left(_\right)
\end{aligned}
$$

- Our example grammar in rule notation:

$$
\begin{array}{lrl}
\langle\text { prog }\rangle & \rightarrow & \langle\text { expr }\rangle
\end{array} \rightarrow!\langle\text { expr }\rangle,
$$

Grammars: Ambiguity

- A grammar is ambiguous, if a word can be derived in multiple ways
- Our example grammar is actually ambiguous...

$$
\begin{aligned}
&\langle\text { prog }\rangle::=(\langle\text { expr }\rangle ;)^{*} \\
&\langle\text { expr }\rangle::=\text { True } \mid \text { False } \mid\langle\text { var }\rangle \mid!\langle\text { expr }\rangle \mid\langle\text { expr }\rangle \&\langle\text { expr }\rangle \mid\langle\text { expr }\rangle \mid\langle\text { expr }\rangle \\
&\langle\text { var }\rangle::=\operatorname{Var}\left(_\right)
\end{aligned}
$$

- The word x \& y \& z ; can be derived as (x \& y) \& z; and $x \&(y \& z)$;
- Even worse, the word x \& y | z ; can be derived as (x \& y) | z ; and x \& ($\mathrm{y} \mid \mathrm{z}$); where only the first one is valid ("and" binds stronger than "or")
- This is no problem if the grammar only used to describe abstract syntax tree data types, but it matters for parsing
- We can fix this by slightly adjusting the grammar to capture the concrete syntax

Grammars: Ambiguity (Fix 1)

- Grammar for abstract syntax (ambiguous):

$$
\begin{aligned}
\langle\operatorname{prog}\rangle & ::=(\langle\text { expr }\rangle ;)^{*} \\
\langle\text { expr }\rangle & ::=\text { True } \mid \text { False } \mid\langle\text { var }\rangle \mid!\langle\text { expr }\rangle \mid\langle\text { expr }\rangle \&\langle\text { expr }\rangle \mid\langle\text { expr }\rangle \mid\langle\text { expr }\rangle \\
\langle\text { var }\rangle & ::=\operatorname{Var}\left(_\right)
\end{aligned}
$$

- Grammar for concrete syntax (unambiguous):

$$
\begin{aligned}
& \langle\text { prog }\rangle::=(\langle\text { expr }\rangle ;)^{*} \\
& \langle\text { expr }\rangle::=\operatorname{True} \mid \text { False } \mid\langle\text { var }\rangle \mid(!\langle\text { expr }\rangle) \mid(\langle\text { expr }\rangle \&\langle\text { expr }\rangle) \mid(\langle\text { expr }\rangle \mid\langle\text { expr }\rangle) \\
& \langle\text { var }\rangle::=\operatorname{Var}\left(_\right)
\end{aligned}
$$

- This forbids !a \& b | c; and requires us to write (($(\mathrm{a}) \& \mathrm{~b}) \mid \mathrm{c})$;

Grammars: Ambiguity

- What we actually want is:
- \& binds stronger than I, e.g. x \& y | z means (x \& y) | z
- ! binds stronger than \& e.g. ! x \& y means (! x) \& y
- \& is left-associative, e.g. x \& y \& z means (x \& y) \& z
- | is left-associative, e.g. x | y | z means (x | y) | z
- ! is right-associative, e.g. ! ! x means ! (! x)
- As \& and I are associative operators, making them left-associative is an arbitrary choice, and we could just as well make them right-associative

Grammars: Ambiguity (Fix 2)

- Grammar for abstract syntax (ambiguous):

$$
\begin{aligned}
& \langle\text { prog }\rangle::=(\langle\text { expr }\rangle ;)^{*} \\
& \langle\text { expr }\rangle::=\text { True } \mid \text { False } \mid\langle\text { var }\rangle \mid!\langle\text { expr }\rangle \mid\langle\text { expr }\rangle \&\langle\text { expr }\rangle \mid\langle\text { expr }\rangle \mid\langle\text { expr }\rangle \\
& \langle\text { var }\rangle::=\operatorname{Var}\left(_\right)
\end{aligned}
$$

- Grammar for concrete syntax (unambiguous):

$$
\begin{aligned}
\langle\text { prog }\rangle & :: \\
\langle\text { expr }\rangle & :=\langle\text { expr }\rangle ;)^{*} \\
\langle\text { expr } 1\rangle & ::=\langle\text { expr } 1\rangle \&\langle\text { expr } 1\rangle \mid\langle\text { expr } 2\rangle \mid\langle\text { expr } 2\rangle \\
\langle\text { expr } 2\rangle & ::=!\langle\text { expr } 2\rangle \mid\langle\text { expr } 3\rangle \\
\langle\text { expr } 3\rangle & ::=\text { True } \mid \text { False } \mid\langle\text { var }\rangle \mid(\langle\text { expr }\rangle) \\
\langle\text { var }\rangle & ::=\operatorname{Var}\left(_\right)
\end{aligned}
$$

- This forces !a \& b | c; to be parsed as (((!a) \& b) | c);

Grammars: Abstract Syntax vs Concrete Syntax

Example word: !a \& (b | c); Abstract Syntax Tree:

In most scenarios, we want to parse according to the concrete syntax, but have the parser generate an abstract syntax tree \rightarrow attribute grammars

Concrete Syntax Tree:

Grammars: Classification

- The Chomsky Hierarchy classifies languages by the kind of production rules that are required to describe them:
- Recursively enumerable languages can be described by rules of the form:

$$
\alpha \rightarrow \beta \quad \forall \alpha, \beta \in(N \cup \Sigma)^{*}, \alpha \text { not empty }
$$

- Parsing is semi-decidable
- Context-sensitive languages can be described by rules of the form:

$$
\alpha A \gamma \rightarrow \alpha \beta \gamma \quad \forall A \in N, \alpha, \beta, \gamma \in(N \cup \Sigma)^{*}, \beta \text { not empty }
$$

- Parsing is PSPACE-complete
- Context-free languages can be described by rules of the form:

$$
A \rightarrow \alpha \quad \forall A \in N, \alpha \in(N \cup \Sigma)^{*}
$$

- Parsing with $O\left(n^{3}\right)$ worst-case time complexity
- Regular languages can be described by rules of the form:

$$
A \rightarrow a \quad A \rightarrow a B \quad \forall A, B \in N, a \in \Sigma
$$

- Parsing with $O(n)$ worst-case time complexity

Grammars: Classification

- We are only concerned with regular and context free languages
- Regular languages for lexing
- Context-free languages for parsing
- The majority of programming languages can be described by a context-free grammar*
- There are many subclasses of context-free languages, which are more restrictive, but have better time and space complexity
- e.g. the language classes LL, LR, LALR can be parsed in linear time, but are still powerful enough to parse Java
- writing grammars in these subclasses can be more annoying, because less shapes of production rules are allowed
*: Some require minor preprocessing, like Python ("semantic whitespace")

The Earley Parser

- Can parse arbitrary context-free grammars
- Worst-case time complexity:
- $O\left(n^{3}\right)$ for ambiguous grammars (we don't care about those)
- $O\left(n^{2}\right)$ for unambiguous grammars
- Relatively simple (170 lines of Python)
- Can be reused as it is basically a grammar interpreter
- Nice for prototyping as it supports general context-freee grammars
- Probably a bit slow for single files with millions of tokens
- Produces multiple syntax trees when used with ambigous grammars

The Earley Parser: Basic Principle

- Loops once over each token of the input word
- Tracks which production rules made how much progress in a chart
- A chart maps each token index to a set of dotted rules
- A dotted rule is a production rule, which
- has a marker (dot) in its right side that denotes how much of that rule was matched by the input so far
- is annotated with the token index at which it was first added to the chart
- chart[0] is initialized with dotted rules derivable from the start symbol
- For each token t we compute chart [i] from chart [i-1] by checking, which rule expects a t after the dot and moving their dot one symbol to the right [some details omitted]
- A word is accepted, if the last entry of chart contains a rule with the start symbol on the left side and a dot at the end of its right side

The Earley Parser: Example (1/7)

- Input word: "True \& False ;"
- Step 1: Add rules with the start symbol to the chart:

$$
\left.\left.\left.\begin{array}{rl}
\operatorname{chart}[0]=\{ & (0,\langle\text { prog }\rangle
\end{array} \rightarrow \bullet\right), ~ \begin{array}{rl}
\\
& (0,\langle\text { prog }\rangle
\end{array} \rightarrow \bullet\langle\text { expr }\rangle ;\langle\text { prog }\rangle\right)\right\}
$$

- Step 2: For each dotted rule in chart [0], also add the rules for all non-terminals which come immediately after a dot:

$$
\begin{aligned}
\text { chart }[0]=\text { chart }[0] \cup\{ & (0,\langle\text { expr }\rangle \rightarrow \bullet \text { True }), \\
& (0,\langle\text { expr }\rangle \rightarrow \bullet \text { False }), \\
& (0,\langle\text { expr }\rangle \rightarrow \bullet\langle\text { var }\rangle) \\
& (0,\langle\text { expr }\rangle \rightarrow \bullet!\langle\text { expr }\rangle), \\
& (0,\langle\text { expr }\rangle \rightarrow \bullet\langle\text { expr }\rangle \&\langle\text { expr }\rangle), \\
& (0,\langle\text { expr }\rangle \rightarrow \bullet\langle\text { expr }\rangle \mid\langle\text { expr }\rangle)\}
\end{aligned}
$$

- Step 3: Repeat until the set doesn't change anymore:

$$
\operatorname{chart}[0]=\operatorname{chart}[0] \cup\left\{\left(0,\langle\operatorname{var}\rangle \rightarrow \bullet \operatorname{Var}\left(_\right)\right)\right\}
$$

The Earley Parser: Example (2/7)

- Input word: "True \& False ;"
- Step 4: The first input token is True, so search for dotted rules in chart [0], which have an True after the dot:

$$
(0,\langle\text { expr }\rangle \rightarrow \bullet \text { True })
$$

- Move the dot after the matched symbol:

$$
(0,\langle\text { expr }\rangle \rightarrow \text { True } \bullet)
$$

- Add the modified rules to chart[1]:

$$
\operatorname{chart}[1]=\{(0,\langle\text { expr }\rangle \rightarrow \text { True } \bullet)\}
$$

The Earley Parser：Example（3／7）

－Input word：＂True \＆False ；＂
－Step 5：Check for completed rules in chart［1］，i．e．rules which have the dot at the end：

$$
(0,\langle\text { expr }\rangle \rightarrow \text { True } \bullet)
$$

－This rule was created at the beginning（0），so search for rules in chart［0］，which have 〈expr〉 after the dot：

$$
\begin{aligned}
(0,\langle e x p r\rangle & \rightarrow \bullet \text { expr }\rangle \&\langle e x p r\rangle) \\
(0,\langle e x p r\rangle & \rightarrow \bullet \text { expr }\rangle \mid\langle e x p r\rangle)
\end{aligned}
$$

－Move the dot after \langle expr〉 and add them to chart［1］：

$$
\left.\left.\left.\begin{array}{rl}
\operatorname{chart}[1]=\operatorname{chart}[1] \cup\{(0,\langle\text { expr }\rangle & \rightarrow\langle\text { expr }\rangle \bullet \&\langle\text { expr }\rangle) \\
& (0,\langle\text { expr }\rangle
\end{array} \rightarrow\langle\text { expr }\rangle \bullet \right\rvert\,\langle\text { expr }\rangle\right)\right\}
$$

The Earley Parser: Example (4/7)

- Input word: "True \& False ;"
- Check if there are rules in chart [1] where the dot is in front of a non-terminal, and add the rules for the non-terminal also to chart [1] (same as for chart [0] in the beginning).
- There are no such rules.
- Repeat Step 5 until the chart[1] doesn't change anymore.
- This is already the case.

The Earley Parser: Example (5 / 7)

- Input word: "True \& False ;"
- Step 6: The next input token is \& so check for rules in chart [1] with an \& after the dot:

$$
(0,\langle\text { expr }\rangle \rightarrow\langle\text { expr }\rangle \bullet \&\langle\text { expr }\rangle)
$$

- Move the \bullet to the right and add to chart [2]:

$$
\operatorname{chart}[2]=\{(0,\langle\text { expr }\rangle \rightarrow\langle e x p r\rangle \& \bullet\langle e x p r\rangle)\}
$$

- Step 7: Repeat Step 5 for chart [2] until it doesn't change anymore:

$$
\begin{aligned}
\text { chart }[2]=\text { chart }[2] \cup\{ & (2,\langle\text { expr }\rangle \rightarrow \bullet \text { True }), \\
& (2,\langle\text { expr }\rangle \rightarrow \bullet \text { False }), \\
& (2,\langle\text { expr }\rangle \rightarrow \bullet\langle\operatorname{var}\rangle), \\
& (2,\langle\text { expr }\rangle \rightarrow \bullet!\langle\text { expr }\rangle), \\
& (2,\langle\text { expr }\rangle \rightarrow \bullet\langle\text { expr }\rangle \&\langle\text { expr }\rangle), \\
& (2,\langle\text { expr }\rangle \rightarrow \bullet\langle\text { expr }\rangle \mid\langle\text { expr }\rangle), \\
& \left.\left(2,\langle\text { var }\rangle \rightarrow \bullet \operatorname{Var}\left(_\right)\right)\right\}
\end{aligned}
$$

The Earley Parser: Example (6/7)

- Input word: "True \& False ;"
- Step 8: The next input token is False so check for rules in chart [2] with an \& after the dot:

$$
(2,\langle\text { expr }\rangle \rightarrow \bullet \text { False })
$$

- Move the \bullet to the right and add to chart [3]:

$$
\operatorname{chart}[3]=\{(2,\langle\text { expr }\rangle \rightarrow \text { False } \bullet)\}
$$

- Step 9: Repeat Step 5 for chart [3] until it doesn't change anymore:

$$
\begin{aligned}
\operatorname{chart}[3]=\operatorname{chart}[3] \cup\{ & (0,\langle\text { expr }\rangle \rightarrow\langle\text { expr }\rangle \&\langle\text { expr }\rangle \bullet), \\
& (2,\langle\text { expr }\rangle \rightarrow\langle\text { expr }\rangle \bullet \&\langle\text { expr }\rangle), \\
& (2,\langle\text { expr }\rangle \rightarrow\langle\text { expr }\rangle \bullet \mid\langle\text { expr }\rangle), \\
& (0,\langle\text { prog }\rangle \rightarrow\langle\text { expr }\rangle \bullet ;\langle\text { prog }\rangle)\}
\end{aligned}
$$

The Earley Parser: Example (7 / 7)

- Input word: "True \& False ;"
- Step 10: The next input token is ; so check for rules in chart [3] with an ; after the dot:

$$
(0,\langle\text { prog }\rangle \rightarrow\langle\text { expr }\rangle \bullet ;\langle\text { prog }\rangle)
$$

- Move the • to the right and add to chart [4]:

$$
\operatorname{chart}[4]=\{(0,\langle\text { prog }\rangle \rightarrow\langle\text { expr }\rangle ; \bullet\langle\text { prog }\rangle)\}
$$

- Step 11: Repeat Step 5 for chart [4] until it doesn't change anymore:

$$
\begin{aligned}
\text { chart }[4]=\text { chart }[4] \cup\{ & (4,\langle\text { prog }\rangle \rightarrow \bullet), \\
& (4,\langle\text { prog }\rangle \rightarrow \bullet \text { expr }\rangle ;\langle\text { prog }\rangle), \\
& (4,\langle\text { expr }\rangle \rightarrow \bullet \text { True }), \\
& \cdots \\
& (0,\langle\text { prog }\rangle \rightarrow\langle\text { expr }\rangle ;\langle\text { prog }\rangle \bullet)\}
\end{aligned}
$$

- chart [4] contains a rule from the beginning (0) with the start symbol on the left side and a dot at the end of the right side, hence the input word is in the language.

