
Compiler Construction

Integers and Variables
Chapter 2

Hannes Saffrich

University of Freiburg
Department of Computer Science

Programming Languages

23. April 2024

Hannes Saffrich Integers and Variables 2024-04-23 1 / 23



The Plan
▶ Big Picture

▶ Start with a compiler and interpreter for Lvar (Chapter 2)
▶ Extend the compiler and interpreter with new features in the rest of

this course
▶ Today (lecture)

▶ Writing an interpreter (without parser)
▶ Introduction to RISC-V Assembly
▶ Dicussion of the Lvar compiler passes (Chapter 2)

▶ Friday (lecture)
▶ Lexing and Parsing (Chapter 3)

▶ Next Tuesday (tutorial)
▶ Introduction to the exercise framework
▶ Introduction to the first exercise:

▶ Writing a compiler for the Lvar language

Hannes Saffrich Integers and Variables 2024-04-23 2 / 23



Interpreter
▶ Let’s write an interpreter for Lvar !

Lexer Parser Type Checker Evaluator
Text Tokens Py AST Py AST

Hannes Saffrich Integers and Variables 2024-04-23 3 / 23



The Lvar language (Chapter 2)

⟨prog⟩ ::= ⟨stmt⟩∗

⟨stmt⟩ ::= ⟨expr⟩
| ⟨var⟩ = ⟨expr⟩
| print(⟨expr⟩)

⟨expr⟩ ::= ⟨int⟩
| ⟨var⟩
| ⟨op1⟩⟨expr⟩
| ⟨expr⟩⟨op2⟩⟨expr⟩
| input_int()

⟨op1⟩ ::= -

⟨op2⟩ ::= - | +

Example Program:

x = input_int()
y = input_int() + x
print(x + y - 5)
3 + 4
input_int()

Hannes Saffrich Integers and Variables 2024-04-23 4 / 23



RISC-V Example
▶ Example: The C program

int main(void) {
return 42; // Exit with exit code 42

}

corresponds to this RISC-V assembly code:
.globl main

main:
li a0, 42
ret

▶ Generally, an assembly program is a list of
▶ assembly instructions, which are translated to one or more machine

code instructions
▶ labels, which give a name to the address of the next instruction, and

can be used in control flow instructions like call main or j main.
▶ assembly directives, which specify metadata for later compiler passes

like machine code generation and linking
Hannes Saffrich Integers and Variables 2024-04-23 5 / 23



RISC-V Registers
▶ Registers are the internal memory of a processor
▶ RISC-V 64 provides 32 registers to store integers
▶ Each register stores 64 bit of data
▶ Some registers have special meaning, e.g.

▶ the zero register is hardwired to always contain the constant 0
▶ the sp register is used by convention to store the stack pointer

▶ In RISC architectures, all instructions operate on registers, except for
special load and store instructions which transfer data between RAM
and registers.

▶ In CISC architectures, also other instructions can directly refer to
addresses in RAM, e.g. addition.

Hannes Saffrich Integers and Variables 2024-04-23 6 / 23



RISC-V Registers

The RISC-V Instruction Set Manual, Chapter 20, p. 109
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

Hannes Saffrich Integers and Variables 2024-04-23 7 / 23

https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf


RISC-V Basic Instructions
▶ Accessing RAM

▶ The load instruction transfers data from RAM to a register, e.g.

ld a0, -16(fp)

loads the data from RAM address fp - 16 to register a0.
▶ The store instruction transfers data from a register to RAM, e.g.

sd a0, -16(fp)

stores the data from register a0 at RAM address fp - 16.
▶ Storing a constant in a register

▶ The load immediate instruction loads a constant into a register, e.g.

li a0, 42

Hannes Saffrich Integers and Variables 2024-04-23 8 / 23



RISC-V Basic Instructions
▶ Integer Arithmetic

▶ The add instruction adds the data from two registers and stores the
result in a third register, e.g.

add a0, a1, a2

adds a1 and a2 and stores the result in a0.
▶ For subtraction, multiplication, division and modulo there are similar

instructions called sub, mul, div, and rem, respectively.
▶ The addi instruction adds the data from a register to a constant and

stores the result in another register, e.g.

addi a0, a1, 42

adds 42 to a1 and stores the result in a0. As the constant is part of the
instruction, it has to be within the bounds of a 12-bit integer.

▶ There are no immediate instructions for subtraction, multiplication,
division and modulo.

Hannes Saffrich Integers and Variables 2024-04-23 9 / 23



RISC-V Basic Instructions
▶ Function Calls

▶ The call label instruction calls a function by
▶ writing the address of the next instruction (pc + 4) into the return

address register ra
▶ setting the program counter pc to the address described by label

▶ The ret instruction returns from a function by
▶ setting the program counter to the address stored in the return address

register ra
▶ For ret to return to the right place, the return address register ra

needs to contain the same value from when the function was called
▶ What if our function calls other functions?

▶ A convention dictates if the caller or callee is responsible for saving a
register.

▶ This is described in “Saver” column of the register table
▶ For the return address register ra, it is the responsibility of the caller to

save the register
▶ This means if we call a function, then that function is allowed to change

the content of ra, so if we still need the content of ra after the call, we
need to save it before the call in a callee-save register or on the stack.

Hannes Saffrich Integers and Variables 2024-04-23 10 / 23



RISC-V Basic Instructions
▶ Function Calls

▶ Arguments and return values are not part of the call and ret
instructions

▶ Instead, they are stored in registers or on the stack
▶ A calling convention dictates where exactly they have to be placed:

▶ 64-bit integer arguments are stored in the registers a0-a7.
▶ Return values are stored in registers a0 and a1.
▶ If more than 8 arguments are passed, they are stored on the end of the

caller’s stack frame in descending order, i.e. argument 9 at 0(sp),
argument 10 at 8(sp), etc.

▶ For larger arguments (e.g. C-structs) different rules can apply (not
important for us now)

▶ The stack pointer register sp points to the beginning of the last word
(8 bytes) of the caller’s stackframe.

▶ The frame pointer points to the beginning of the last word before the
current stackframe. Usually, this is the stack pointer of the caller.

▶ If return address and/or frame pointer have to be saved, then they are
saved at the beginning of the stack frame, and return address comes
before frame pointer.

Hannes Saffrich Integers and Variables 2024-04-23 11 / 23



RISC-V Basic Instructions
▶ Example

▶ Function foo calls function bar with 11 integer arguments
▶ Function bar uses three local variables, which are stored on the stack
▶ The following shows the stack at the time when execution is inside bar:

Frame Position Position Contents
0(sp) -48(fp) Empty for alignment
8(sp) -40(fp) Local Var 3

bar 16(sp) -32(fp) Local Var 2
24(sp) -24(fp) Local Var 1
32(sp) -16(fp) foo’s fp
40(sp) -8(fp) Return Address
48(sp) 0(fp) Argument 9

foo 56(sp) 8(fp) Argument 10
64(sp) 16(fp) Argument 11

Hannes Saffrich Integers and Variables 2024-04-23 12 / 23



RISC-V Basic Instructions
▶ Example

▶ The assembly code creating this stack frame could look as follows:
foo:

...
li a0, ARG1
li a1, ARG2
...
li a7, ARG8
li t0, ARG9
sd t0, 16(sp)
li t0, ARG10
sd t0, 8(sp)
li t0, ARG11
sd t0, 0(sp)
call bar
...

bar:
sd ra, -8(sp)
sd fp, -16(sp)
addi fp, sp, 0
addi sp, sp, -48
li t0, LOCAL1
sd t0, -24(fp)
li t0, LOCAL2
sd t0, -32(fp)
li t0, LOCAL3
sd t0, -40(fp)
... # <- you are here
li a0, RESULT
addi sp, sp, 48
ld ra, -8(sp)
ld fp, -16(sp)
ret

Hannes Saffrich Integers and Variables 2024-04-23 13 / 23



RISC-V Basic Instructions
▶ Function Calls

▶ It is possible to deviate from the calling convention, if you generate the
code for both caller and callee.

▶ It is important to follow the calling convention, when calling
C-functions, which is necessary to use operating system functionality,
e.g. file I/O, printing to the terminal, or network access.

Hannes Saffrich Integers and Variables 2024-04-23 14 / 23



Lvar Compiler
▶ Goal: compile Lvar programs to RISC-V 64 assembly
▶ Multiple passes and intermediate languages
▶ C Runtime for input_int and print functions
▶ Use gcc to generate machine code from assembly and link with the

machine code of the runtime

Lexer Parser Type Checker Simplifier

SelectionAssignPatchPreamblePrinter

Text Tokens Py AST Py AST

IR1 AST

IR2 ASTIR3 ASTRiscV ASTRiscV ASTText

Hannes Saffrich Integers and Variables 2024-04-23 15 / 23



Lvar Compiler: Monadic Normalform
▶ Instructions don’t have subexpressions
▶ The Lvar language does have arbitrarily nested subexpressions
▶ Idea: Assign subexpressions to new temporary variables
▶ Example:

x = input()
print((x + 3) -

5) =⇒

x = input()
tmp:0 = x + 3
tmp:1 = tmp:0 - 5
print(tmp:1)

▶ Output is a program in the IR language Lmon
var , which is like Lvar , but

expressions must have variables or constants as subexpressions.

Hannes Saffrich Integers and Variables 2024-04-23 16 / 23



Lvar Compiler: Instruction Selection
▶ Transform Lmon

var programs to riscvvar programs.
▶ Example:

x = input()

tmp:0 = x + 3
tmp:1 = tmp:0 - 5
print(tmp:1)

=⇒

call input_int64
mv #x, a0
add #tmp:0, #x, 3
sub #tmp:1, #tmp:0, 5
mv a0 #tmp:0
call print_int64

Hannes Saffrich Integers and Variables 2024-04-23 17 / 23



Lvar Compiler: Assign Homes
▶ Transform riscvvar programs to riscvmem programs.
▶ Example:

call input_int64
mv #x, a0
add #tmp:0, #x, 3
sub #tmp:1, #tmp:0, 5
mv a0 #tmp:0
call print_int64

=⇒

call input_int64
mv -24(fp), a0
add -32(fp), -24(fp), 3
sub -40(fp), -32(fp), 5
mv a0, -40(fp)
call print_int64

Hannes Saffrich Integers and Variables 2024-04-23 18 / 23



Lvar Compiler: Patch Instructions
▶ Transform riscvmem programs into actual RISC-V 64 programs.
▶ Example:

call input_int64
mv -24(fp), a0

add -32(fp), -24(fp), 3

sub -40(fp), -32(fp), 5

mv a0, -40(fp)
call print_int64

=⇒

call input_int64
add t0,zero,a0
sd t0,-24(fp)
ld t1,-24(fp)
addi t0,t1,3
sd t0,-32(fp)
ld t1,-32(fp)
addi t0,t1,-5
sd t0,-40(fp)
ld a0,-40(fp)
call print_int64

Hannes Saffrich Integers and Variables 2024-04-23 19 / 23



Lvar Compiler: Add Prelude and Conclusion
▶ Transform the RISC-V 64 program into a RISC-V 64 program.
▶ Example:

.globl main
main:

sd ra,-8(sp)
sd fp,-16(sp)
addi fp,sp,0
addi sp,sp,-48
call input_int64
add t0,zero,a0
sd t0,-24(fp)
ld t1,-24(fp)
addi t0,t1,3

sd t0,-32(fp)
ld t1,-32(fp)
addi t0,t1,-5
sd t0,-40(fp)
ld a0,-40(fp)
call print_int64
addi a0,zero,0
addi sp,sp,48
ld ra,-8(sp)
ld fp,-16(sp)
ret

Hannes Saffrich Integers and Variables 2024-04-23 20 / 23



Lvar Compiler: Runtime
▶ Implemented in C

#include <stdio.h>

void print_int64(long x) {
printf("%ld\n", x);

}

long input_int64() {
long x = 0;
scanf("%ld", &x);
return x;

}

▶ On RISC-V 64 a long is a 64-bit integer.

Hannes Saffrich Integers and Variables 2024-04-23 21 / 23



Lvar Compiler: Runtime
▶ Cross-platform alternative:

#include <stdint.h>
#include <inttypes.h>
#include <stdio.h>

void print_int64(int64_t x) {
printf("%" PRId64 "\n", x);

}

int64_t input_int64() {
int64_t x = 0;
scanf("%" SCNd64, &x);
return x;

}

Hannes Saffrich Integers and Variables 2024-04-23 22 / 23



Lvar Compiler: Running our assembly
▶ Use gcc variant for cross-compilation to RISC-V 64
▶ Compile our assembly and link together with our runtime:

riscv64-linux-gnu-gcc-10 -static foo.S runtime.c -o foo
▶ Use qemu to emulate the RISC-V program on your local machine:

qemu-riscv64-static foo
▶ We provide a Dockerfile containing both the RISC-V gcc and qemu

Hannes Saffrich Integers and Variables 2024-04-23 23 / 23


