
Compiler Construction

Tuples & Garbage Collection
Hannes Saffrich

University of Freiburg
Department of Computer Science

Programming Languages

4. Juni 2024

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 1 / 36



Tuples
▶ Tuples are immutable, heterogeneous lists, e.g. (10, True, 30)
▶ Immutable: no entries can be removed, added, or changed
▶ Heterogeneous: the entries can have different types
▶ The type of a tuple is a tuple of its component types, e.g.

(10, True, 20) : tuple[int, bool, int]
▶ We model the following operations on tuples:

t = (10, True, 20) # Tuple literals
x = t[1] # Element Access; x is True
y = len(t) # Length of a tuple ; y is 3

▶ We restrict element access to constant indices due to static typing
▶ t[1] has type int
▶ t[f()] is forbidden, because type checking would be undecidable for

arbitrary turing complete functions f

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 2 / 36



Tuples: Memory Layout
▶ With dynamic typing, tuples need to be allocated on the heap
▶ With static typing, tuples can also be allocated on the stack
▶ The book allocates tuples on the heap, as they later also introduce

optional dynamic typing
▶ We follow the book to showcase how heap allocations work

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 3 / 36



Tuples: Static Memory Layout
▶ As tuples or structs in C/++ or Rust

fn f () {
// 10 and 20 are placed next to each other on the stack
let x = (10, 20);

// 10 and 20 are both passed as part of the argument
g(x) ;

// A pointer to the begin of the tuple is passed as argument
// which allows h to read the tuple out of f ’ s stack frame
h(&x);

}

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 4 / 36



Tuples: Dynamic Memory Layout
▶ As tuples in Python or $DYNAMICALLY_TYPED_LANGUAGE

def f () :
# A new memory region is allocated on the heap.
# 10 and 20 are placed next to each other in that region .
# x contains a pointer to the beginning of that region .
x = (10, 20)

# The pointer to the tuple is passed as an argument
g(x)

# If f returns , the stack contains no pointer to the
# memory region, which a garbage collector will
# eventually detect and free the memory again
# (assuming g doesn’t store the pointer in a global variable )

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 5 / 36



Managing Heap Memory
▶ Manual Memory Management

▶ the user is responsible for allocating and freeing heap memory
▶ can be achieved with functions from the C standard library
▶ malloc takes a number of bytes as an argument, finds a free region on

the heap of that size, marks it as used, and returns a pointer to that
region.

▶ free takes a pointer, which was previously returned by malloc, and
marks that memory region as free again, such that it can be reused by
subsequent calls to malloc.

▶ Automatic Memory Management
▶ Garbage collectors only provide a function to allocate memory, and

periodically scan for memory regions, which cannot be reached
anymore, and free them automatically.

▶ Garbage collectors trade runtime performance for memory safety and
simplicity.

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 6 / 36



Garbage Collection: Two-Space Copying Collector
▶ This is the garbage collector we use
▶ Divides the heap into two regions: the from-space and to-space
▶ Allocated memory is taken sequentially from the from space
▶ If the from-space runs out of memory → garbage collection:

▶ Find objects that are reachable transitively from the stack
▶ Reachable objects are copied from from-space to to-space
▶ Pointers in stack and objects are adjusted accordingly
▶ The from-space becomes the new to-space, and vice versa

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 7 / 36



Garbage Collection: Example
Before Collection

[Essentials of Compilations, Jeremy Siek, Figure 7.5]

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 8 / 36



Garbage Collection: Example
After Collection

[Essentials of Compilations, Jeremy Siek, Figure 7.5]

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 9 / 36



Garbage Collection: Pointer or Integer?
▶ Garbage collector (GC) needs to identify pointers to heap space
▶ But integers and pointers are indistinguishable in memory:

▶ 32 could be a number → GC should ignore it
▶ 32 could be the address to heap space → GC should follow it

▶ This affects both values stored on the stack and values stored inside
of heap objects, e.g. tuple entries

▶ The book addresses this issue by having a second stack for heap
pointers (“shadow stack”), and adding metadata to the tuple objects
describing, which tuple entries are heap pointers

▶ We take a different approach that we call value tagging

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 10 / 36



Garbage Collection: Value Tagging
▶ All our values take exactly 64bit of space:

▶ Integers
▶ Booleans
▶ Pointers (to tuples on the heap)

▶ Crazy idea: can we steal one of the 64 bits and use it as a tag?
▶ 1 would mean “heap pointer”; 0 would mean “no heap pointer”
▶ The answer is “yes” by using a sufficient amount of black magic!

▶ Instead of 64 bit integers, we have 63 bit integers
▶ We still have the full range of pointers (!?)
▶ Booleans have lots of unused bits anyways
▶ Only minimal adjustments in code generation!
▶ We choose the least significant bit to encode the tag

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 11 / 36



Garbage Collection: Value Tagging for Integers
▶ Integers are not heap pointers, so the tag bit should be 0
▶ Example: 5 was previously encoded as 101, but now it is 1010
▶ Additon, subtraction, negation, and multiplication still work!
▶ Key Insight: adding a 0 at the right means multiplying by two
▶ Example for Addition:

▶ Let’s say we want to add two numbers x and y
▶ Then they are encoded as 2x and 2y
▶ Adding them is 2x + 2y = 2(x + y) which is the encoding of x + y
▶ The overflow behaviour is also as expected for 63 bit integers

▶ Only caveat: When calling a C-function with integer arguments (like
print_int), the tags need to be removed by right-shifting

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 12 / 36



Garbage Collection: Value Tagging for Booleans
▶ Booleans are not heap pointers, so the tag bit should be 0
▶ Example: True was previously encoded as 1, but now it is 10
▶ Key Insight: Logic instructions are bitwise
▶ Conjunction and Disjunction still work the same!

▶ it doesn’t matter which bit we use for the actual boolean data
▶ tag bit remains 0 as all operands have a 0 tag bit

▶ Negation does not work the same:
▶ bitwise not also flips the tag bit
▶ but we can compute not x as 2 - x!

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 13 / 36



Garbage Collection: Value Tagging for Pointers
▶ Pointers can be heap pointers (tuples) or not (spilled framepointer)
▶ Key Insight: All addresses are multiples of 8 due to alignment
▶ This means the three least significant bits are always 0
▶ Non-Heap-Pointers behave as before:

▶ Let’s say register a0 contains a non-heap-pointer
▶ Then ld a1, 0(a0) loads the corresponding word into a1

▶ Heap-Pointers can be adjusted via offset:
▶ Let’s say register a0 contains a heap-pointer
▶ Then ld a1, -1(a0) loads the corresponding word into a1

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 14 / 36



Garbage Collection: Value Tagging and FFI
▶ What about calling C-functions like print_int64 or input_int64?
▶ Tag needs to be removed from arguments and added to return values
▶ Integers and booleans

▶ need to be divided by two, before used as arguments
▶ need to be multiplied by two, after retrieved as a return values

▶ Heap-Pointers
▶ need to have their tag bit set to 0, before used as arguments
▶ need to have their tag bit set to 1, after retrieved as a return values

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 15 / 36



Garbage Collection: Cycles
▶ How should the garbage collector deal with cycles in the heap graph?
▶ Does not happen with tuples, but could happen for more complicated

data structures, like graphs, where each node contains a pointers to
all neighbors

▶ During collection the GC needs to track which object it already visited
▶ Idea: Each heap object starts with an extra word with meta data
▶ The least significant bit of that word is used during garbage collection

to store whether this object has already been copied or not
▶ If the bit is 0, then it hasn’t been copied, and the other 63 bits store

the word length of the object
▶ If the bit is 1, then it has already been copied, and the other 63 bits

store the address to where it has been copied
▶ If the GC finds a pointer to an object that was not yet copied, it uses

the word length to know how much it needs to copy
▶ If the GC finds a pointer to an object that was already copied, it

changes the pointer to the new address.
Hannes Saffrich Tuples & Garbage Collection 2024-04-23 16 / 36



Garbage Collection: Detailed Example
▶ Let’s consider the following program:

i = 42 # no allocation
x = (0,) # 2 words = 16 bytes (length + 1 entry)
x = (1,) # 2 words = 16 bytes (length + 1 entry)
y = (x,2) # 3 words = 24 bytes (length + 2 entries )
z = (3,) # 2 words = 16 bytes (length + 1 entry)

▶ Let’s assume from- and to-space are both 8 words = 64 bytes long
▶ Let’s assume all variables are spilled to the stack
▶ When z = (3,) is executed, we run out of space
▶ Garbage collector kicks in and copies (1,) and (x,2), but not (0,)
▶ After collection, 3 words are free, so the object for (5, x) is allocated

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 17 / 36



Garbage Collection: Detailed Example
▶ Current Statement: i = 42

Stack
Loc 63bit Tag

i 42 0

FromSpace
Loc 63bit Tag

ToSpace
Loc 63bit Tag

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 18 / 36



Garbage Collection: Detailed Example
▶ Current Statement: x = (0,)

Stack
Loc 63bit Tag

i 42 0
x • 1

FromSpace
Loc 63bit Tag
meta 1 0
entry1 0 0

ToSpace
Loc 63bit Tag

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 19 / 36



Garbage Collection: Detailed Example
▶ Current Statement: x = (1,)

Stack
Loc 63bit Tag

i 42 0
x • 1

FromSpace
Loc 63bit Tag
meta 1 0
entry1 0 0
meta 1 0
entry1 1 0

ToSpace
Loc 63bit Tag

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 20 / 36



Garbage Collection: Detailed Example
▶ Current Statement: y = (x,2)

Stack
Loc 63bit Tag

i 42 0
x • 1
y • 1

FromSpace
Loc 63bit Tag
meta 1 0
entry1 0 0
meta 1 0
entry1 1 0
meta 2 0
entry1 • 1
entry2 2 0

ToSpace
Loc 63bit Tag

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 21 / 36



Garbage Collection: Detailed Example
▶ Current Statement: z = (3,)

Stack
Loc 63bit Tag

i 42 0
x • 1
y • 1

FromSpace
Loc 63bit Tag
meta 1 0
entry1 0 0
meta 1 0
entry1 1 0
meta 2 0
entry1 • 1
entry2 2 0

ToSpace
Loc 63bit Tag

▶ Not enough space → Garbage Collection
▶ Stack is scanned for heap pointers
▶ By looking at the tags, it finds that x and y contain heap pointers

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 22 / 36



Garbage Collection: Detailed Example
▶ Current Statement: z = (3,)

Stack
Loc 63bit Tag

i 42 0
x • 1
y • 1

FromSpace
Loc 63bit Tag
meta 1 0
entry1 0 0
meta • 1
entry1 1 0
meta 2 0
entry1 • 1
entry2 2 0

ToSpace
Loc 63bit Tag
meta 1 0
entry1 1 0

▶ The object behind x got copied to ToSpace
▶ The pointer in x was updated
▶ The old object was marked as “already copied” and a forwarding

pointer was stored in the meta information

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 23 / 36



Garbage Collection: Detailed Example
▶ Current Statement: z = (3,)

Stack
Loc 63bit Tag

i 42 0
x • 1
y • 1

FromSpace
Loc 63bit Tag
meta 1 0
entry1 0 0
meta • 1
entry1 1 0
meta • 1
entry1 • 1
entry2 2 0

ToSpace
Loc 63bit Tag
meta 1 0
entry1 1 0
meta 2 0
entry1 • 1
entry2 2 0

▶ The object behind y got copied to ToSpace
▶ The pointer in y was updated
▶ The old object was marked as “already copied” and a forwarding

pointer was stored in the meta information

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 24 / 36



Garbage Collection: Detailed Example
▶ Current Statement: z = (3,)

Stack
Loc 63bit Tag

i 42 0
x • 1
y • 1

FromSpace
Loc 63bit Tag
meta 1 0
entry1 0 0
meta • 1
entry1 1 0
meta • 1
entry1 • 1
entry2 2 0

ToSpace
Loc 63bit Tag
meta 1 0
entry1 1 0
meta 2 0
entry1 • 1
entry2 2 0

▶ All objects pointed to from the stack have been copied
▶ Now the objects in the to-space are scanned
▶ The second object contains a heap pointer
▶ That heap pointer points to an already copied object
▶ The heap pointer is replaced with the forwarding pointer

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 25 / 36



Garbage Collection: Detailed Example
▶ Current Statement: z = (3,)

Stack
Loc 63bit Tag

i 42 0
x • 1
y • 1

ToSpace
Loc 63bit Tag
meta 1 0
entry1 0 0
meta • 1
entry1 1 0
meta • 1
entry1 • 1
entry2 2 0

FromSpace
Loc 63bit Tag
meta 1 0
entry1 1 0
meta 2 0
entry1 • 1
entry2 2 0

▶ Garbage collection finishes by treating the ToSpace as FromSpace and
vice versa

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 26 / 36



Garbage Collection: Detailed Example
▶ Current Statement: z = (3,)

Stack
Loc 63bit Tag

i 42 0
x • 1
y • 1
z • 1

ToSpace
Loc 63bit Tag
meta 1 0
entry1 0 0
meta • 1
entry1 1 0
meta • 1
entry1 • 1
entry2 2 0

FromSpace
Loc 63bit Tag
meta 1 0
entry1 1 0
meta 2 0
entry1 • 1
entry2 2 0
meta 1 0
entry1 3 0

▶ Finally, the current statement finishes by allocating the tuple

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 27 / 36



Garbage Collection: Registers
▶ In the example, we assumed all registers are spilled
▶ This does not need to be the case in practice
▶ To ensure that the GC updates all pointers, all registers containing

heap pointers need to be spilled before running the GC
▶ Safe and simple: make all registers interfere with calls to the GC

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 28 / 36



Garbage Collection: Size of From- and To-Space
▶ GCs need to reserve the memory for from- & to-space upfront
▶ Reserving all available memory is a bad idea:

▶ only a small amount of memory might be needed
▶ reserved memory is not available to other processes

▶ Solution: Start with a small size for from- and to-space and reallocate
on demand

▶ Can be done in amortized constant time using the same technique as
for std::vector in C++, Vec in Rust, or list in python

▶ If after garbage collection with a from- and to-space of m bytes, we
still need n more bytes, then the new from- and to-space are p bytes
large, where p is the next power of two larger than m + n

▶ Copying from the old from-space to the new from-space is the same
as copying from from-space to to-space when collecting garbage

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 29 / 36



Garbage Collection: API
▶ The garbage collector is part of the runtime and implemented in C
▶ It provides the following API:

int64_t∗ gc_free_ptr; // first free byte on from-space
int64_t∗ gc_fromspace_end; // first byte after from-space
void gc_init (

int64_t∗ stack_begin, // stack pointer at begin of main
uint64_t heap_size // initial size of from-/to-space

) ;
void gc_collect (

int64_t∗ stack_end, // current stack pointer
uint64_t requested_bytes // to reallocate from-/to-space

) ; // if collection didn’t free
// enough space

▶ The pointers are regular C-pointers, i.e. no value tagging
Hannes Saffrich Tuples & Garbage Collection 2024-04-23 30 / 36



Global Variables
▶ The following C-program

int x = 42;
int main() { return x; }

can be compiled to
.data

x:
.word 42
.text
.globl main

main:
la a0, x
ld a0, 0(a0)
ret

▶ Addresses of global variables are accessed via labels
▶ Their data is put into the .data-Segment of a program
▶ The load address instruction la retrieves the address of a label

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 31 / 36



Tuple Compilation
▶ Tuple expressions need to be translated to allocation, potential

garbage collection, and entry initialization
▶ New pass early in the compilation pipeline, such that we can use

high-level features like if-statements
▶ Initializing tuple entries requires the intermediate languages to allow

subscripts in the left-hand-sides of assignments, e.g. x[1] = y
▶ Instruction selection pass compiles the allocation and garbage

collection expressions into call instructions, load and store instructions
▶ Expressions for global variables need to be added

▶ Tuple subscripts, e.g. x = y[i], simply retrieve the corresponding
entry value of the tuple object using register offsets, e.g. -9(a0)

▶ Tuple length, e.g. x = len(y), retrieves the meta data of the tuple
object using register offsets and then shifts right to remove the GC tag

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 32 / 36



Tuple Compilation: New Pass
The python code

x = (1, 2)
is translated to

e1 = 1
e2 = 2
if free_ptr + num_bytes < fromspace_end:
else :

collect (num_bytes)
t = allocate(num_bytes)
t [0] = e1
t [1] = e2
x = t

where num_bytes = 8 + 8 * 2

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 33 / 36



Tuple Compilation: Instruction Selection
▶ x = allocate(n) is translated to

addi x 0(free_ptr ) 1
add free_ptr 0(free_ptr ) (8 + 8 ∗ n)
mv −1(x) METADATA

▶ free_ptr represents the address of the global variable
▶ label offsets, e.g. 0(free_ptr), are not allowed in RISC-V and need to

be translated to load address la and load instructions with offsets in
patch_instructions

▶ collect(n) is translated to
mv a0 sp
mv a1 n
call gc_collect

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 34 / 36



Tuple Compilation: Main Prelude
▶ In the prelude of the main function, we need to initialize the garbage

collector by calling gc_init

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 35 / 36



Tuple Compilation: Interaction with while

▶ Tuple expressions can appear as while conditions, e.g.
x = 0
while (x, 1) [0] < 10:

x = x + 1

▶ While non-sensical, we need to take care of such expressions
▶ Allocation needs to happen for each iteration, and not just the first
▶ Same trick as before, but already in earlier compiler passes:

@dataclass
class SWhile:

test_body: IList [Stmt]
test_expr : ECompare
loop_body: IList [Stmt]

Hannes Saffrich Tuples & Garbage Collection 2024-04-23 36 / 36


